BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 31896460)

  • 41. Fasting Concentrations and Postprandial Response of 1,2-Dicarbonyl Compounds 3-Deoxyglucosone, Glyoxal, and Methylglyoxal Are Not Increased in Healthy Older Adults.
    Herpich C; Kochlik B; Weber D; Ott C; Grune T; Norman K; Raupbach J
    J Gerontol A Biol Sci Med Sci; 2022 May; 77(5):934-940. PubMed ID: 34726231
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Quantification of dicarbonyl compounds in commonly consumed foods and drinks; presentation of a food composition database for dicarbonyls.
    Maasen K; Scheijen JLJM; Opperhuizen A; Stehouwer CDA; Van Greevenbroek MM; Schalkwijk CG
    Food Chem; 2021 Mar; 339():128063. PubMed ID: 33152865
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The effect of processing on chlorogenic acid content of commercially available coffee.
    Mills CE; Oruna-Concha MJ; Mottram DS; Gibson GR; Spencer JP
    Food Chem; 2013 Dec; 141(4):3335-40. PubMed ID: 23993490
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Glyoxal and methylglyoxal trigger distinct signals for map family kinases and caspase activation in human endothelial cells.
    Akhand AA; Hossain K; Mitsui H; Kato M; Miyata T; Inagi R; Du J; Takeda K; Kawamoto Y; Suzuki H; Kurokawa K; Nakashima I
    Free Radic Biol Med; 2001 Jul; 31(1):20-30. PubMed ID: 11425486
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Isolation and determination of alpha-dicarbonyl compounds by RP-HPLC-DAD in green and roasted coffee.
    Daglia M; Papetti A; Aceti C; Sordelli B; Spini V; Gazzani G
    J Agric Food Chem; 2007 Oct; 55(22):8877-82. PubMed ID: 17927199
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Modification of the amino group of guanosine by methylglyoxal and other alpha-ketoaldehydes in the presence of hydrogen peroxide.
    Nukaya H; Inaoka Y; Ishida H; Tsuji K; Suwa Y; Wakabayashi K; Kosuge T
    Chem Pharm Bull (Tokyo); 1993 Apr; 41(4):649-53. PubMed ID: 8508467
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Differences in glyoxal and methylglyoxal metabolism determine cellular susceptibility to protein carbonylation and cytotoxicity.
    Yang K; Qiang D; Delaney S; Mehta R; Bruce WR; O'Brien PJ
    Chem Biol Interact; 2011 May; 191(1-3):322-9. PubMed ID: 21334317
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The dietary hydroxycinnamate caffeic acid and its conjugate chlorogenic acid increase vitamin e and cholesterol concentrations in Sprague-Dawley rats.
    Frank J; Kamal-Eldin A; Razdan A; Lundh T; Vessby B
    J Agric Food Chem; 2003 Apr; 51(9):2526-31. PubMed ID: 12696931
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A novel glutathione-hydroxycinnamic acid product generated in oxidative wine conditions.
    Bouzanquet Q; Barril C; Clark AC; Dias DA; Scollary GR
    J Agric Food Chem; 2012 Dec; 60(49):12186-95. PubMed ID: 23163604
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Formation of 4(5)-methylimidazole and its precursors, α-dicarbonyl compounds, in Maillard model systems.
    Jang HW; Jiang Y; Hengel M; Shibamoto T
    J Agric Food Chem; 2013 Jul; 61(28):6865-72. PubMed ID: 23796138
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Coffee Abundant in Chlorogenic Acids Reduces Abdominal Fat in Overweight Adults: A Randomized, Double-Blind, Controlled Trial.
    Watanabe T; Kobayashi S; Yamaguchi T; Hibi M; Fukuhara I; Osaki N
    Nutrients; 2019 Jul; 11(7):. PubMed ID: 31315279
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Modification of chickpea cystatin by reactive dicarbonyl species: Glycation, oxidation and aggregation.
    Bhat SA; Bhat WF; Afsar M; Khan MS; Al-Bagmi MS; Bano B
    Arch Biochem Biophys; 2018 Jul; 650():103-115. PubMed ID: 29775569
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of solvent polarity on the absorption and fluorescence spectra of chlorogenic acid and caffeic acid compounds: determination of the dipole moments.
    Belay A; Libnedengel E; Kim HK; Hwang YH
    Luminescence; 2016 Feb; 31(1):118-26. PubMed ID: 25991491
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The reactions of phenylglyoxal and related reagents with amino acids.
    Takahashi K
    J Biochem; 1977 Feb; 81(2):395-402. PubMed ID: 14946
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cretan tea (Origanum dictamnus L.) as a functional beverage: an investigation on antiglycative and carbonyl trapping activities.
    Maietta M; Colombo R; Corana F; Papetti A
    Food Funct; 2018 Mar; 9(3):1545-1556. PubMed ID: 29431803
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of pH on the reaction between naringenin and methylglyoxal: A kinetic study.
    Zhu H; Poojary MM; Andersen ML; Lund MN
    Food Chem; 2019 Nov; 298():125086. PubMed ID: 31272050
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Grape skin extracts from winemaking by-products as a source of trapping agents for reactive carbonyl species.
    Sri Harsha PS; Mesias M; Lavelli V; Morales FJ
    J Sci Food Agric; 2016 Jan; 96(2):656-63. PubMed ID: 25683838
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of coffee filtrate, methylglyoxal, glyoxal, and caffeine on Salmonella typhimurium and S. enteritidis survival in ground chicken breasts.
    Maletta AB; Were LM
    J Food Sci; 2012 Feb; 77(2):M135-41. PubMed ID: 22339548
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High-performance liquid chromatographic-fluorometric determination of glyoxal, methylglyoxal, and diacetyl in urine by prederivatization to pteridinic rings.
    Espinosa-Mansilla A; Durán-Merás I; Salinas F
    Anal Biochem; 1998 Jan; 255(2):263-73. PubMed ID: 9451513
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Investigations on the reactions of α-dicarbonyl compounds with amino acids and proteins during in vitro digestion of biscuits.
    Hamzalıoğlu A; Gökmen V
    Food Funct; 2016 Jun; 7(6):2544-50. PubMed ID: 26974292
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.