BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 31896515)

  • 21. Combinatory approach for developing silk fibroin scaffolds for cartilage regeneration.
    Ribeiro VP; da Silva Morais A; Maia FR; Canadas RF; Costa JB; Oliveira AL; Oliveira JM; Reis RL
    Acta Biomater; 2018 May; 72():167-181. PubMed ID: 29626700
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enzymatically Crosslinked In Situ Synthesized Silk/Gelatin/Calcium Phosphate Hydrogels for Drug Delivery.
    Grava A; Egle K; Dubnika A
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885345
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rapid and cytocompatible cell-laden silk hydrogel formation
    Piluso S; Flores Gomez D; Dokter I; Moreira Texeira L; Li Y; Leijten J; van Weeren R; Vermonden T; Karperien M; Malda J
    J Mater Chem B; 2020 Oct; 8(41):9566-9575. PubMed ID: 33001117
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design and performance of a poly(vinyl alcohol)/silk fibroin enzymatically crosslinked semi-interpenetrating hydrogel for a potential hydrophobic drug delivery.
    Niu C; Li X; Wang Y; Liu X; Shi J; Wang X
    RSC Adv; 2019 Dec; 9(70):41074-41082. PubMed ID: 35540084
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis of pH and Glucose Responsive Silk Fibroin Hydrogels.
    Tao X; Jiang F; Cheng K; Qi Z; Yadavalli VK; Lu S
    Int J Mol Sci; 2021 Jul; 22(13):. PubMed ID: 34281160
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dual-crosslinked in-situ forming alginate/silk fibroin hydrogel with potential for bone tissue engineering.
    Ghorbani M; Vasheghani-Farahani E; Azarpira N; Hashemi-Najafabadi S; Ghasemi A
    Biomater Adv; 2023 Oct; 153():213565. PubMed ID: 37542914
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cytoprotection of Human Progenitor and Stem Cells through Encapsulation in Alginate Templated, Dual Crosslinked Silk and Silk-Gelatin Composite Hydrogel Microbeads.
    Hasturk O; Smiley JA; Arnett M; Sahoo JK; Staii C; Kaplan DL
    Adv Healthc Mater; 2022 Sep; 11(17):e2200293. PubMed ID: 35686928
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sonication-induced gelation of silk fibroin for cell encapsulation.
    Wang X; Kluge JA; Leisk GG; Kaplan DL
    Biomaterials; 2008 Mar; 29(8):1054-64. PubMed ID: 18031805
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exploring the Gelation Mechanisms and Cytocompatibility of Gold (III)-Mediated Regenerated and Thiolated Silk Fibroin Hydrogels.
    Laomeephol C; Ferreira H; Yodmuang S; Reis RL; Damrongsakkul S; Neves NM
    Biomolecules; 2020 Mar; 10(3):. PubMed ID: 32197484
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ovarian Cell Encapsulation in an Enzymatically Crosslinked Silk-Based Hydrogel with Tunable Mechanical Properties.
    Jafari H; Dadashzadeh A; Moghassemi S; Zahedi P; Amorim CA; Shavandi A
    Gels; 2021 Sep; 7(3):. PubMed ID: 34563024
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced Osteogenesis of Bone Marrow-Derived Mesenchymal Stem Cells by a Functionalized Silk Fibroin Hydrogel for Bone Defect Repair.
    Yan Y; Cheng B; Chen K; Cui W; Qi J; Li X; Deng L
    Adv Healthc Mater; 2019 Feb; 8(3):e1801043. PubMed ID: 30485718
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Laccase-mediated construction of flexible double-network hydrogels based on silk fibroin and tyramine-modified hyaluronic acid.
    Wang L; Xu B; Nong Y; Wang P; Yu Y; Deng C; Yuan J; Wang Q
    Int J Biol Macromol; 2020 Oct; 160():795-805. PubMed ID: 32497666
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Soft freezing-induced self-assembly of silk fibroin for tunable gelation.
    Li X; Yan S; Qu J; Li M; Ye D; You R; Zhang Q; Wang D
    Int J Biol Macromol; 2018 Oct; 117():691-695. PubMed ID: 29859277
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis and characterization of photocrosslinkable gelatin and silk fibroin interpenetrating polymer network hydrogels.
    Xiao W; He J; Nichol JW; Wang L; Hutson CB; Wang B; Du Y; Fan H; Khademhosseini A
    Acta Biomater; 2011 Jun; 7(6):2384-93. PubMed ID: 21295165
    [TBL] [Abstract][Full Text] [Related]  

  • 35. One-Step FRESH Bioprinting of Low-Viscosity Silk Fibroin Inks.
    Sakai S; Morita T
    ACS Biomater Sci Eng; 2022 Jun; 8(6):2589-2597. PubMed ID: 35608818
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Horseradish Peroxidase-Crosslinked Calcium-Containing Silk Fibroin Hydrogels as Artificial Matrices for Bone Cancer Research.
    Pierantoni L; Ribeiro VP; Costa L; Pina S; da Silva Morais A; Silva-Correia J; Kundu SC; Motta A; Reis RL; Oliveira JM
    Macromol Biosci; 2021 Apr; 21(4):e2000425. PubMed ID: 33522095
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Methacrylated Silk Fibroin Hydrogels: pH as a Tool to Control Functionality.
    Barroso IA; Man K; Villapun VM; Cox SC; Ghag AK
    ACS Biomater Sci Eng; 2021 Oct; 7(10):4779-4791. PubMed ID: 34586800
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phospholipid-induced silk fibroin hydrogels and their potential as cell carriers for tissue regeneration.
    Laomeephol C; Guedes M; Ferreira H; Reis RL; Kanokpanont S; Damrongsakkul S; Neves NM
    J Tissue Eng Regen Med; 2020 Jan; 14(1):160-172. PubMed ID: 31671250
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Human mesenchymal stem cells cultured on silk hydrogels with variable stiffness and growth factor differentiate into mature smooth muscle cell phenotype.
    Floren M; Bonani W; Dharmarajan A; Motta A; Migliaresi C; Tan W
    Acta Biomater; 2016 Feb; 31():156-166. PubMed ID: 26621695
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular and macro-scale analysis of enzyme-crosslinked silk hydrogels for rational biomaterial design.
    McGill M; Coburn JM; Partlow BP; Mu X; Kaplan DL
    Acta Biomater; 2017 Nov; 63():76-84. PubMed ID: 28919509
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.