These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 31896543)

  • 1. Alternate RNA Structures.
    Wu MT; D'Souza V
    Cold Spring Harb Perspect Biol; 2020 Jan; 12(1):. PubMed ID: 31896543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping the landscape of RNA dynamics with NMR spectroscopy.
    Rinnenthal J; Buck J; Ferner J; Wacker A; Fürtig B; Schwalbe H
    Acc Chem Res; 2011 Dec; 44(12):1292-301. PubMed ID: 21894962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HIV-1 spliced RNAs display transcription start site bias.
    Esquiaqui JM; Kharytonchyk S; Drucker D; Telesnitsky A
    RNA; 2020 Jun; 26(6):708-714. PubMed ID: 32205324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The molecular interactions that stabilize RNA tertiary structure: RNA motifs, patterns, and networks.
    Butcher SE; Pyle AM
    Acc Chem Res; 2011 Dec; 44(12):1302-11. PubMed ID: 21899297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and function of the human immunodeficiency virus leader RNA.
    Berkhout B
    Prog Nucleic Acid Res Mol Biol; 1996; 54():1-34. PubMed ID: 8768071
    [No Abstract]   [Full Text] [Related]  

  • 6. Topology links RNA secondary structure with global conformation, dynamics, and adaptation.
    Bailor MH; Sun X; Al-Hashimi HM
    Science; 2010 Jan; 327(5962):202-6. PubMed ID: 20056889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of conformational heterogeneity in ligand recognition by viral RNA molecules.
    Levintov L; Vashisth H
    Phys Chem Chem Phys; 2021 May; 23(19):11211-11223. PubMed ID: 34010381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of RNA function by oligonucleotides recognizing RNA structure.
    Toulmé JJ; Di Primo C; Moreau S
    Prog Nucleic Acid Res Mol Biol; 2001; 69():1-46. PubMed ID: 11550792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structures of RNA switches: insight into molecular recognition and tertiary structure.
    Schwalbe H; Buck J; Fürtig B; Noeske J; Wöhnert J
    Angew Chem Int Ed Engl; 2007; 46(8):1212-9. PubMed ID: 17226886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HIV-1 splicing is controlled by local RNA structure and binding of splicing regulatory proteins at the major 5' splice site.
    Mueller N; Berkhout B; Das AT
    J Gen Virol; 2015 Jul; 96(Pt 7):1906-17. PubMed ID: 25779589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HIV-1 nucleocapsid protein and the secondary structure of the binary complex formed between tRNA(Lys.3) and viral RNA template play different roles during initiation of (-) strand DNA reverse transcription.
    Rong L; Liang C; Hsu M; Guo X; Roques BP; Wainberg MA
    J Biol Chem; 2001 Dec; 276(50):47725-32. PubMed ID: 11602578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constructing Free Energy Landscapes of Nucleic Acid Hairpin Unfolding.
    McCauley MJ; Rouzina I; Williams MC
    Methods Mol Biol; 2018; 1811():315-332. PubMed ID: 29926462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constructing atomic-resolution RNA structural ensembles using MD and motionally decoupled NMR RDCs.
    Stelzer AC; Frank AT; Bailor MH; Andricioaei I; Al-Hashimi HM
    Methods; 2009 Oct; 49(2):167-73. PubMed ID: 19699798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional domain-assembly in hairpin ribozymes.
    Komatsu Y; Kanzaki I; Shirai M; Kumagai I; Yamashita S; Ohtsuka E
    J Biochem; 2000 Apr; 127(4):531-6. PubMed ID: 10739942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple biological roles associated with the repeat (R) region of the HIV-1 RNA genome.
    Berkhout B
    Adv Pharmacol; 2000; 48():29-73. PubMed ID: 10987088
    [No Abstract]   [Full Text] [Related]  

  • 16. Genome-Wide Analysis of RNA Secondary Structure.
    Bevilacqua PC; Ritchey LE; Su Z; Assmann SM
    Annu Rev Genet; 2016 Nov; 50():235-266. PubMed ID: 27648642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic ensemble view of the conformational landscape of HIV-1 TAR RNA and allosteric recognition.
    Lu J; Kadakkuzha BM; Zhao L; Fan M; Qi X; Xia T
    Biochemistry; 2011 Jun; 50(22):5042-57. PubMed ID: 21553929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crumple: a method for complete enumeration of all possible pseudoknot-free RNA secondary structures.
    Bleckley S; Stone JW; Schroeder SJ
    PLoS One; 2012; 7(12):e52414. PubMed ID: 23300665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hexitol nucleic acid-containing aptamers are efficient ligands of HIV-1 TAR RNA.
    Kolb G; Reigadas S; Boiziau C; van Aerschot A; Arzumanov A; Gait MJ; Herdewijn P; Toulmé JJ
    Biochemistry; 2005 Mar; 44(8):2926-33. PubMed ID: 15723535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How binding of small molecule and peptide ligands to HIV-1 TAR alters the RNA motional landscape.
    Bardaro MF; Shajani Z; Patora-Komisarska K; Robinson JA; Varani G
    Nucleic Acids Res; 2009 Apr; 37(5):1529-40. PubMed ID: 19139066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.