BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 31896558)

  • 1. Genome-wide analysis identifies
    Yang F; Wang W; Cetinbas M; Sadreyev RI; Blower MD
    RNA; 2020 Mar; 26(3):324-344. PubMed ID: 31896558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analyses of zebrafish and Xenopus oocyte maturation reveal conserved and diverged features of translational regulation of maternal cyclin B1 mRNA.
    Zhang Y; Sheets MD
    BMC Dev Biol; 2009 Jan; 9():7. PubMed ID: 19175933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly(A) elongation during Xenopus oocyte maturation is required for translational recruitment and is mediated by a short sequence element.
    McGrew LL; Dworkin-Rastl E; Dworkin MB; Richter JD
    Genes Dev; 1989 Jun; 3(6):803-15. PubMed ID: 2568313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mos 3' UTR regulatory differences underlie species-specific temporal patterns of Mos mRNA cytoplasmic polyadenylation and translational recruitment during oocyte maturation.
    Prasad CK; Mahadevan M; MacNicol MC; MacNicol AM
    Mol Reprod Dev; 2008 Aug; 75(8):1258-68. PubMed ID: 18246541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple sequence elements and a maternal mRNA product control cdk2 RNA polyadenylation and translation during early Xenopus development.
    Stebbins-Boaz B; Richter JD
    Mol Cell Biol; 1994 Sep; 14(9):5870-80. PubMed ID: 8065320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CPEB controls the cytoplasmic polyadenylation of cyclin, Cdk2 and c-mos mRNAs and is necessary for oocyte maturation in Xenopus.
    Stebbins-Boaz B; Hake LE; Richter JD
    EMBO J; 1996 May; 15(10):2582-92. PubMed ID: 8665866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CNOT6 regulates a novel pattern of mRNA deadenylation during oocyte meiotic maturation.
    Vieux KF; Clarke HJ
    Sci Rep; 2018 May; 8(1):6812. PubMed ID: 29717177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of poly(A)-tail length and translation in vertebrate oocytes and early embryos.
    Xiang K; Ly J; Bartel DP
    Dev Cell; 2024 Apr; 59(8):1058-1074.e11. PubMed ID: 38460509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Translational control by poly(A) elongation during Xenopus development: differential repression and enhancement by a novel cytoplasmic polyadenylation element.
    Simon R; Tassan JP; Richter JD
    Genes Dev; 1992 Dec; 6(12B):2580-91. PubMed ID: 1285126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Translational control of cyclin B1 mRNA during meiotic maturation: coordinated repression and cytoplasmic polyadenylation.
    Barkoff AF; Dickson KS; Gray NK; Wickens M
    Dev Biol; 2000 Apr; 220(1):97-109. PubMed ID: 10720434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. N6-Methyladenosine Sequencing Highlights the Involvement of mRNA Methylation in Oocyte Meiotic Maturation and Embryo Development by Regulating Translation in Xenopus laevis.
    Qi ST; Ma JY; Wang ZB; Guo L; Hou Y; Sun QY
    J Biol Chem; 2016 Oct; 291(44):23020-23026. PubMed ID: 27613873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Translational activation and cytoplasmic polyadenylation of FGF receptor-1 are independently regulated during Xenopus oocyte maturation.
    Culp PA; Musci TJ
    Dev Biol; 1998 Jan; 193(1):63-76. PubMed ID: 9466888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Translational control by cytoplasmic polyadenylation during Xenopus oocyte maturation: characterization of cis and trans elements and regulation by cyclin/MPF.
    McGrew LL; Richter JD
    EMBO J; 1990 Nov; 9(11):3743-51. PubMed ID: 2145153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Translational control of nuclear lamin B1 mRNA during oogenesis and early development of Xenopus.
    Ralle T; Gremmels D; Stick R
    Mech Dev; 1999 Jun; 84(1-2):89-101. PubMed ID: 10473123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deadenylation of maternal mRNAs during Xenopus oocyte maturation does not require specific cis-sequences: a default mechanism for translational control.
    Varnum SM; Wormington WM
    Genes Dev; 1990 Dec; 4(12B):2278-86. PubMed ID: 1980656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CPEB and miR-15/16 Co-Regulate Translation of Cyclin E1 mRNA during Xenopus Oocyte Maturation.
    Wilczynska A; Git A; Argasinska J; Belloc E; Standart N
    PLoS One; 2016; 11(2):e0146792. PubMed ID: 26829217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytoplasmic mRNA polyadenylation and translation assays.
    Piqué M; López JM; Méndez R
    Methods Mol Biol; 2006; 322():183-98. PubMed ID: 16739724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Further analysis of cytoplasmic polyadenylation in Xenopus embryos and identification of embryonic cytoplasmic polyadenylation element-binding proteins.
    Simon R; Richter JD
    Mol Cell Biol; 1994 Dec; 14(12):7867-75. PubMed ID: 7969126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Translational regulation of cyclin B mRNA by 17alpha,20beta-dihydroxy-4-pregnen-3-one (maturation-inducing hormone) during oocyte maturation in a teleost fish, the goldfish (Carassius auratus).
    Katsu Y; Yamashita M; Nagahama Y
    Mol Cell Endocrinol; 1999 Dec; 158(1-2):79-85. PubMed ID: 10630408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overexpression of poly(A) binding protein prevents maturation-specific deadenylation and translational inactivation in Xenopus oocytes.
    Wormington M; Searfoss AM; Hurney CA
    EMBO J; 1996 Feb; 15(4):900-9. PubMed ID: 8631310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.