These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 31896559)

  • 1. Assessment of Spontaneous Neuronal Activity
    Negri J; Menon V; Young-Pearse TL
    eNeuro; 2020; 7(1):. PubMed ID: 31896559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of spike sorting algorithm to neuronal signals originated from boron doped diamond micro-electrode arrays.
    Klempíř O; Krupička R; Krůšek J; Dittert I; Petráková V; Petrák V; Taylor A
    Physiol Res; 2020 Jul; 69(3):529-536. PubMed ID: 32469239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Framework for the Comparative Assessment of Neuronal Spike Sorting Algorithms towards More Accurate Off-Line and On-Line Microelectrode Arrays Data Analysis.
    Regalia G; Coelli S; Biffi E; Ferrigno G; Pedrocchi A
    Comput Intell Neurosci; 2016; 2016():8416237. PubMed ID: 27239191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantal Release of Dopamine and Action Potential Firing Detected in Midbrain Neurons by Multifunctional Diamond-Based Microarrays.
    Tomagra G; Picollo F; Battiato A; Picconi B; De Marchis S; Pasquarelli A; Olivero P; Marcantoni A; Calabresi P; Carbone E; Carabelli V
    Front Neurosci; 2019; 13():288. PubMed ID: 31024230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MEAnalyzer - a Spike Train Analysis Tool for Multi Electrode Arrays.
    Dastgheyb RM; Yoo SW; Haughey NJ
    Neuroinformatics; 2020 Jan; 18(1):163-179. PubMed ID: 31273627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unsupervised neural spike sorting for high-density microelectrode arrays with convolutive independent component analysis.
    Leibig C; Wachtler T; Zeck G
    J Neurosci Methods; 2016 Sep; 271():1-13. PubMed ID: 27317497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Skeletal myotube integration with planar microelectrode arrays in vitro for spatially selective recording and stimulation: a comparison of neuronal and myotube extracellular action potentials.
    Langhammer CG; Kutzing MK; Luo V; Zahn JD; Firestein BL
    Biotechnol Prog; 2011; 27(3):891-5. PubMed ID: 21574266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-density MEA recordings unveil the dynamics of bursting events in Cell Cultures.
    Lonardoni D; Di Marco S; Amin H; Maccione A; Berdondini L; Nieus T
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():3763-6. PubMed ID: 26737112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growing neuronal islands on multi-electrode arrays using an accurate positioning-μCP device.
    Samhaber R; Schottdorf M; El Hady A; Bröking K; Daus A; Thielemann C; Stühmer W; Wolf F
    J Neurosci Methods; 2016 Jan; 257():194-203. PubMed ID: 26432934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applicability of independent component analysis on high-density microelectrode array recordings.
    Jäckel D; Frey U; Fiscella M; Franke F; Hierlemann A
    J Neurophysiol; 2012 Jul; 108(1):334-48. PubMed ID: 22490552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extracellular recordings from locally dense microelectrode arrays coupled to dissociated cortical cultures.
    Berdondini L; Massobrio P; Chiappalone M; Tedesco M; Imfeld K; Maccione A; Gandolfo M; Koudelka-Hep M; Martinoia S
    J Neurosci Methods; 2009 Mar; 177(2):386-96. PubMed ID: 19027792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ViSAPy: a Python tool for biophysics-based generation of virtual spiking activity for evaluation of spike-sorting algorithms.
    Hagen E; Ness TV; Khosrowshahi A; Sørensen C; Fyhn M; Hafting T; Franke F; Einevoll GT
    J Neurosci Methods; 2015 Apr; 245():182-204. PubMed ID: 25662445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micro-electrode array recordings reveal reductions in both excitation and inhibition in cultured cortical neuron networks lacking Shank3.
    Lu C; Chen Q; Zhou T; Bozic D; Fu Z; Pan JQ; Feng G
    Mol Psychiatry; 2016 Feb; 21(2):159-68. PubMed ID: 26598066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative Analysis of Human and Rodent Brain Primary Neuronal Culture Spontaneous Activity Using Micro-Electrode Array Technology.
    Napoli A; Obeid I
    J Cell Biochem; 2016 Mar; 117(3):559-65. PubMed ID: 26284690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-well microelectrode array recordings detect neuroactivity of ToxCast compounds.
    Valdivia P; Martin M; LeFew WR; Ross J; Houck KA; Shafer TJ
    Neurotoxicology; 2014 Sep; 44():204-17. PubMed ID: 24997244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. meaRtools: An R package for the analysis of neuronal networks recorded on microelectrode arrays.
    Gelfman S; Wang Q; Lu YF; Hall D; Bostick CD; Dhindsa R; Halvorsen M; McSweeney KM; Cotterill E; Edinburgh T; Beaumont MA; Frankel WN; Petrovski S; Allen AS; Boland MJ; Goldstein DB; Eglen SJ
    PLoS Comput Biol; 2018 Oct; 14(10):e1006506. PubMed ID: 30273353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endogenous cholinergic tone modulates spontaneous network level neuronal activity in primary cortical cultures grown on multi-electrode arrays.
    Hammond MW; Xydas D; Downes JH; Bucci G; Becerra V; Warwick K; Constanti A; Nasuto SJ; Whalley BJ
    BMC Neurosci; 2013 Mar; 14():38. PubMed ID: 23530974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3-D multi-electrode arrays detect early spontaneous electrophysiological activity in 3-D neuronal-astrocytic co-cultures.
    Vernekar VN; LaPlaca MC
    Biomed Eng Lett; 2020 Nov; 10(4):579-591. PubMed ID: 33194249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling and Analysis of Electrical Potentials Recorded in Microelectrode Arrays (MEAs).
    Ness TV; Chintaluri C; Potworowski J; Łęski S; Głąbska H; Wójcik DK; Einevoll GT
    Neuroinformatics; 2015 Oct; 13(4):403-26. PubMed ID: 25822810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dopamine and Striatal Neuron Firing Respond to Frequency-Dependent DBS Detected by Microelectrode Arrays in the Rat Model of Parkinson's Disease.
    Xiao G; Song Y; Zhang Y; Xing Y; Xu S; Wang M; Wang J; Chen D; Chen J; Cai X
    Biosensors (Basel); 2020 Sep; 10(10):. PubMed ID: 32998190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.