These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 31896668)

  • 21. Morphology and tracer coupling pattern of alpha ganglion cells in the mouse retina.
    Völgyi B; Abrams J; Paul DL; Bloomfield SA
    J Comp Neurol; 2005 Nov; 492(1):66-77. PubMed ID: 16175559
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The diverse functional roles and regulation of neuronal gap junctions in the retina.
    Bloomfield SA; Völgyi B
    Nat Rev Neurosci; 2009 Jul; 10(7):495-506. PubMed ID: 19491906
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Correlated firing in rabbit retinal ganglion cells.
    DeVries SH
    J Neurophysiol; 1999 Feb; 81(2):908-20. PubMed ID: 10036288
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanisms of concerted firing among retinal ganglion cells.
    Brivanlou IH; Warland DK; Meister M
    Neuron; 1998 Mar; 20(3):527-39. PubMed ID: 9539126
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of spike blockade on the receptive-field size of amacrine and ganglion cells in the rabbit retina.
    Bloomfield SA
    J Neurophysiol; 1996 May; 75(5):1878-93. PubMed ID: 8734587
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synchronized firing in the retina.
    Shlens J; Rieke F; Chichilnisky E
    Curr Opin Neurobiol; 2008 Aug; 18(4):396-402. PubMed ID: 18832034
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification and characterization of a Y-like primate retinal ganglion cell type.
    Petrusca D; Grivich MI; Sher A; Field GD; Gauthier JL; Greschner M; Shlens J; Chichilnisky EJ; Litke AM
    J Neurosci; 2007 Oct; 27(41):11019-27. PubMed ID: 17928443
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gap-junction communication between subtypes of direction-selective ganglion cells in the developing retina.
    DeBoer DJ; Vaney DI
    J Comp Neurol; 2005 Jan; 482(1):85-93. PubMed ID: 15612016
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrical synapses convey orientation selectivity in the mouse retina.
    Nath A; Schwartz GW
    Nat Commun; 2017 Dec; 8(1):2025. PubMed ID: 29229967
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plasticity of Retinal Gap Junctions: Roles in Synaptic Physiology and Disease.
    O'Brien J; Bloomfield SA
    Annu Rev Vis Sci; 2018 Sep; 4():79-100. PubMed ID: 29889655
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Conflicting effects by antibodies against connexin36 during the action of intracellular Cyclic-AMP onto electrical synapses of retinal ganglion cells.
    Hidaka S
    J Integr Neurosci; 2016 Dec; 15(4):571-591. PubMed ID: 28052704
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neural architecture of the "transient" ON directionally selective (class IIb1) ganglion cells in rabbit retina, partly co-stratified with starburst amacrine cells.
    Famiglietti EV
    Vis Neurosci; 2016 Jan; 33():E004. PubMed ID: 27484854
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Diverse inhibitory and excitatory mechanisms shape temporal tuning in transient OFF α ganglion cells in the rabbit retina.
    Murphy-Baum BL; Taylor WR
    J Physiol; 2018 Feb; 596(3):477-495. PubMed ID: 29222817
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Correlated firing of cat retinal ganglion cells. I. Spontaneously active inputs to X- and Y-cells.
    Mastronarde DN
    J Neurophysiol; 1983 Feb; 49(2):303-24. PubMed ID: 6300340
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synaptic inputs to physiologically identified retinal X-cells in the cat.
    Weber AJ; McCall MA; Stanford LR
    J Comp Neurol; 1991 Dec; 314(2):350-66. PubMed ID: 1787179
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Different types of ganglion cell share a synaptic pattern.
    Xu Y; Vasudeva V; Vardi N; Sterling P; Freed MA
    J Comp Neurol; 2008 Apr; 507(6):1871-8. PubMed ID: 18271025
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Action potentials are required for the lateral transmission of glycinergic transient inhibition in the amphibian retina.
    Cook PB; Lukasiewicz PD; McReynolds JS
    J Neurosci; 1998 Mar; 18(6):2301-8. PubMed ID: 9482814
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The AII amacrine network: coupling can increase correlated activity.
    Vardi N; Smith RG
    Vision Res; 1996 Dec; 36(23):3743-57. PubMed ID: 8994576
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Activation of ganglion cells and axon bundles using epiretinal electrical stimulation.
    Grosberg LE; Ganesan K; Goetz GA; Madugula SS; Bhaskhar N; Fan V; Li P; Hottowy P; Dabrowski W; Sher A; Litke AM; Mitra S; Chichilnisky EJ
    J Neurophysiol; 2017 Sep; 118(3):1457-1471. PubMed ID: 28566464
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three Small-Receptive-Field Ganglion Cells in the Mouse Retina Are Distinctly Tuned to Size, Speed, and Object Motion.
    Jacoby J; Schwartz GW
    J Neurosci; 2017 Jan; 37(3):610-625. PubMed ID: 28100743
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.