These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 31897288)
1. Public health impact of foodborne exposure to naturally occurring virulence-attenuated Stout A; Van Stelten-Carlson A; Marquis H; Ballou M; Reilly B; Loneragan GH; Nightingale K; Ivanek R Interface Focus; 2020 Feb; 10(1):20190046. PubMed ID: 31897288 [TBL] [Abstract][Full Text] [Related]
2. inlA premature stop codons are common among Listeria monocytogenes isolates from foods and yield virulence-attenuated strains that confer protection against fully virulent strains. Nightingale KK; Ivy RA; Ho AJ; Fortes ED; Njaa BL; Peters RM; Wiedmann M Appl Environ Microbiol; 2008 Nov; 74(21):6570-83. PubMed ID: 18791029 [TBL] [Abstract][Full Text] [Related]
3. Listeria monocytogenes Isolates Carrying Virulence-Attenuating Mutations in Internalin A Are Commonly Isolated from Ready-to-Eat Food Processing Plant and Retail Environments. VAN Stelten A; Roberts AR; Manuel CS; Nightingale KK J Food Prot; 2016 Oct; 79(10):1733-1740. PubMed ID: 28221857 [TBL] [Abstract][Full Text] [Related]
5. Revelation by single-nucleotide polymorphism genotyping that mutations leading to a premature stop codon in inlA are common among Listeria monocytogenes isolates from ready-to-eat foods but not human listeriosis cases. Van Stelten A; Simpson JM; Ward TJ; Nightingale KK Appl Environ Microbiol; 2010 May; 76(9):2783-90. PubMed ID: 20208021 [TBL] [Abstract][Full Text] [Related]
6. Murinization of internalin extends its receptor repertoire, altering Listeria monocytogenes cell tropism and host responses. Tsai YH; Disson O; Bierne H; Lecuit M PLoS Pathog; 2013; 9(5):e1003381. PubMed ID: 23737746 [TBL] [Abstract][Full Text] [Related]
7. Influence of internalin A murinisation on host resistance to orally acquired listeriosis in mice. Bergmann S; Beard PM; Pasche B; Lienenklaus S; Weiss S; Gahan CG; Schughart K; Lengeling A BMC Microbiol; 2013 Apr; 13():90. PubMed ID: 23617550 [TBL] [Abstract][Full Text] [Related]
9. Oral exposure to Listeria monocytogenes in aged IL-17RKO mice: A possible murine model to study listeriosis in susceptible populations. Alam MS; Costales M; Cavanaugh C; Pereira M; Gaines D; Williams K Microb Pathog; 2016 Oct; 99():236-246. PubMed ID: 27574777 [TBL] [Abstract][Full Text] [Related]
10. Development and implementation of a multiplex single-nucleotide polymorphism genotyping assay for detection of virulence-attenuating mutations in the Listeria monocytogenes virulence-associated gene inlA. Van Stelten A; Nightingale KK Appl Environ Microbiol; 2008 Dec; 74(23):7365-75. PubMed ID: 18836010 [TBL] [Abstract][Full Text] [Related]
11. [Virulent gene prevalence of foodborne Listeria monocytogenes in China in 2005]. Yang Y; Fu P; Guo YC; Pei XY; Liu XM Zhonghua Yu Fang Yi Xue Za Zhi; 2010 Dec; 44(12):1097-101. PubMed ID: 21215111 [TBL] [Abstract][Full Text] [Related]
12. Some Listeria monocytogenes outbreak strains demonstrate significantly reduced invasion, inlA transcript levels, and swarming motility in vitro. Roberts AJ; Williams SK; Wiedmann M; Nightingale KK Appl Environ Microbiol; 2009 Sep; 75(17):5647-58. PubMed ID: 19581477 [TBL] [Abstract][Full Text] [Related]
13. Detection of premature stop codons leading to truncated internalin A among food and clinical strains of Listeria monocytogenes. Ferreira da Silva M; Ferreira V; Magalhães R; Almeida G; Alves A; Teixeira P Food Microbiol; 2017 May; 63():6-11. PubMed ID: 28040183 [TBL] [Abstract][Full Text] [Related]
14. Deciphering the virulence potential of Listeria monocytogenes in the Norwegian meat and salmon processing industry by combining whole genome sequencing and in vitro data. Wagner E; Fagerlund A; Thalguter S; Jensen MR; Heir E; Møretrø T; Moen B; Langsrud S; Rychli K Int J Food Microbiol; 2022 Dec; 383():109962. PubMed ID: 36240603 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of the Virulence Potential of Magagna G; Gori M; Russini V; De Angelis V; Spinelli E; Filipello V; Tranquillo VM; De Marchis ML; Bossù T; Fappani C; Tanzi E; Finazzi G Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373288 [No Abstract] [Full Text] [Related]
16. InlA promotes dissemination of Listeria monocytogenes to the mesenteric lymph nodes during food borne infection of mice. Bou Ghanem EN; Jones GS; Myers-Morales T; Patil PD; Hidayatullah AN; D'Orazio SE PLoS Pathog; 2012; 8(11):e1003015. PubMed ID: 23166492 [TBL] [Abstract][Full Text] [Related]
17. A model of food-borne Listeria monocytogenes infection in the Sprague-Dawley rat using gastric inoculation: development and effect of gastric acidity on infective dose. Schlech WF; Chase DP; Badley A Int J Food Microbiol; 1993 Mar; 18(1):15-24. PubMed ID: 8466809 [TBL] [Abstract][Full Text] [Related]
18. A Cross-Protective Vaccine Against 4b and 1/2b Meng F; Zhu T; Yao H; Ling Z; Feng Y; Li G; Li J; Sun X; Chen J; Meng C; Jiao X; Yin Y Front Microbiol; 2020; 11():569544. PubMed ID: 33362730 [No Abstract] [Full Text] [Related]
19. Genes significantly associated with lineage II food isolates of Listeria monocytogenes. Pirone-Davies C; Chen Y; Pightling A; Ryan G; Wang Y; Yao K; Hoffmann M; Allard MW BMC Genomics; 2018 Sep; 19(1):708. PubMed ID: 30253738 [TBL] [Abstract][Full Text] [Related]
20. Listeria monocytogenes lineages: Genomics, evolution, ecology, and phenotypic characteristics. Orsi RH; den Bakker HC; Wiedmann M Int J Med Microbiol; 2011 Feb; 301(2):79-96. PubMed ID: 20708964 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]