These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 31897520)
21. Profiling the reproductive toxicity of chemicals from multigeneration studies in the toxicity reference database. Martin MT; Mendez E; Corum DG; Judson RS; Kavlock RJ; Rotroff DM; Dix DJ Toxicol Sci; 2009 Jul; 110(1):181-90. PubMed ID: 19363143 [TBL] [Abstract][Full Text] [Related]
22. Reproductive and developmental toxicity of phthalates. Lyche JL; Gutleb AC; Bergman A; Eriksen GS; Murk AJ; Ropstad E; Saunders M; Skaare JU J Toxicol Environ Health B Crit Rev; 2009 Apr; 12(4):225-49. PubMed ID: 20183522 [TBL] [Abstract][Full Text] [Related]
23. Evaluation of OECD screening tests 421 (reproduction/developmental toxicity screening test) and 422 (combined repeated dose toxicity study with the reproduction/developmental toxicity screening test). Reuter U; Heinrich-Hirsch B; Hellwig J; Holzum B; Welsch F Regul Toxicol Pharmacol; 2003 Aug; 38(1):17-26. PubMed ID: 12878050 [TBL] [Abstract][Full Text] [Related]
24. Framework for identifying chemicals with structural features associated with the potential to act as developmental or reproductive toxicants. Wu S; Fisher J; Naciff J; Laufersweiler M; Lester C; Daston G; Blackburn K Chem Res Toxicol; 2013 Dec; 26(12):1840-61. PubMed ID: 24206190 [TBL] [Abstract][Full Text] [Related]
25. QSAR models for reproductive toxicity and endocrine disruption activity. Novic M; Vracko M Molecules; 2010 Mar; 15(3):1987-99. PubMed ID: 20336027 [TBL] [Abstract][Full Text] [Related]
26. Developing novel in silico prediction models for assessing chemical reproductive toxicity using the naïve Bayes classifier method. Zhang H; Shen C; Liu RZ; Mao J; Liu CT; Mu B J Appl Toxicol; 2020 Sep; 40(9):1198-1209. PubMed ID: 32207182 [TBL] [Abstract][Full Text] [Related]
27. Generating adverse outcome pathway (AOP) of inorganic arsenic-induced adult male reproductive impairment via integration of phenotypic analysis in comparative toxicogenomics database (CTD) and AOP wiki. Chai Z; Zhao C; Jin Y; Wang Y; Zou P; Ling X; Yang H; Zhou N; Chen Q; Sun L; Chen W; Ao L; Cao J; Liu J Toxicol Appl Pharmacol; 2021 Jan; 411():115370. PubMed ID: 33338516 [TBL] [Abstract][Full Text] [Related]
28. Structure-based thresholds of toxicological concern (TTC): guidance for application to substances present at low levels in the diet. Kroes R; Renwick AG; Cheeseman M; Kleiner J; Mangelsdorf I; Piersma A; Schilter B; Schlatter J; van Schothorst F; Vos JG; Würtzen G; Food Chem Toxicol; 2004 Jan; 42(1):65-83. PubMed ID: 14630131 [TBL] [Abstract][Full Text] [Related]
29. Assessment of prediction confidence and domain extrapolation of two structure-activity relationship models for predicting estrogen receptor binding activity. Tong W; Xie Q; Hong H; Shi L; Fang H; Perkins R Environ Health Perspect; 2004 Aug; 112(12):1249-54. PubMed ID: 15345371 [TBL] [Abstract][Full Text] [Related]
30. Correlation of chemical structure with reproductive and developmental toxicity as it relates to the use of the threshold of toxicological concern. Laufersweiler MC; Gadagbui B; Baskerville-Abraham IM; Maier A; Willis A; Scialli AR; Carr GJ; Felter SP; Blackburn K; Daston G Regul Toxicol Pharmacol; 2012 Feb; 62(1):160-82. PubMed ID: 22019814 [TBL] [Abstract][Full Text] [Related]
31. Ecotoxicological QSAR modeling of organic compounds against fish: Application of fragment based descriptors in feature analysis. Khan K; Baderna D; Cappelli C; Toma C; Lombardo A; Roy K; Benfenati E Aquat Toxicol; 2019 Jul; 212():162-174. PubMed ID: 31128417 [TBL] [Abstract][Full Text] [Related]
32. Threshold of toxicological concern for chemical substances present in the diet: a practical tool for assessing the need for toxicity testing. Kroes R; Galli C; Munro I; Schilter B; Tran L; Walker R; Würtzen G Food Chem Toxicol; 2000; 38(2-3):255-312. PubMed ID: 10717364 [TBL] [Abstract][Full Text] [Related]
33. Prioritizing of potential environmental exposure carcinogens beyond IARC group 1-2B based on weight of evidence (WoE) approach. Zhang L; Li M; Zhang D; Yue W; Qian Z Regul Toxicol Pharmacol; 2024 Jun; 150():105646. PubMed ID: 38777300 [TBL] [Abstract][Full Text] [Related]
34. An analysis of genetic toxicity, reproductive and developmental toxicity, and carcinogenicity data: II. Identification of genotoxicants, reprotoxicants, and carcinogens using in silico methods. Matthews EJ; Kruhlak NL; Cimino MC; Benz RD; Contrera JF Regul Toxicol Pharmacol; 2006 Mar; 44(2):97-110. PubMed ID: 16352383 [TBL] [Abstract][Full Text] [Related]
35. A methodology for assessing developmental and reproductive hazards of chemicals. Brown HS; West CR; Bishop DR; Hicks LR Toxicol Ind Health; 1986 Sep; 2(3):183-203. PubMed ID: 3787656 [TBL] [Abstract][Full Text] [Related]
36. Assessment of the health effects of chemicals in humans: I. QSAR estimation of the maximum recommended therapeutic dose (MRTD) and no effect level (NOEL) of organic chemicals based on clinical trial data. Matthews EJ; Kruhlak NL; Benz RD; Contrera JF Curr Drug Discov Technol; 2004 Jan; 1(1):61-76. PubMed ID: 16472220 [TBL] [Abstract][Full Text] [Related]
37. Machine learning for predicting chemical migration from food packaging materials to foods. Wang SS; Lin P; Wang CC; Lin YC; Tung CW Food Chem Toxicol; 2023 Aug; 178():113942. PubMed ID: 37451598 [TBL] [Abstract][Full Text] [Related]
39. Perspectives on reproductive and developmental toxicity. Johnson EM Toxicol Ind Health; 1986 Dec; 2(4):453-82. PubMed ID: 3296317 [TBL] [Abstract][Full Text] [Related]
40. External validation of acute-to-chronic models for estimation of reproductive toxicity to Daphnia magna. Furuhama A; Hayashi TI; Yamamoto H; Tatarazako N SAR QSAR Environ Res; 2017 Sep; 28(9):765-781. PubMed ID: 29022371 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]