BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 31897899)

  • 1. Polymeric Nanocarrier Formulations of Biologics Using Inverse Flash NanoPrecipitation.
    Markwalter CE; Pagels RF; Hejazi AN; Gordon AGR; Thompson AL; Prud'homme RK
    AAPS J; 2020 Jan; 22(2):18. PubMed ID: 31897899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sustained release of peptides and proteins from polymeric nanocarriers produced by inverse Flash NanoPrecipitation.
    Markwalter CE; Pagels RF; Hejazi AN; Ristroph KD; Wang J; Chen K; Li J; Prud'homme RK
    J Control Release; 2021 Jun; 334():11-20. PubMed ID: 33823220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymeric nanoparticles and microparticles for the delivery of peptides, biologics, and soluble therapeutics.
    Pagels RF; Prud'homme RK
    J Control Release; 2015 Dec; 219():519-535. PubMed ID: 26359125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flash NanoPrecipitation for the Encapsulation of Hydrophobic and Hydrophilic Compounds in Polymeric Nanoparticles.
    Markwalter CE; Pagels RF; Wilson BK; Ristroph KD; Prud'homme RK
    J Vis Exp; 2019 Jan; (143):. PubMed ID: 30663705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly-loaded protein nanocarriers prepared by Flash NanoPrecipitation with hydrophobic ion pairing.
    Ristroph KD; Rummaneethorn P; Johnson-Weaver B; Staats H; Prud'homme RK
    Int J Pharm; 2021 May; 601():120397. PubMed ID: 33647410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of doxorubicin nanoparticles by controlled antisolvent precipitation for enhanced intracellular delivery.
    Tam YT; To KK; Chow AH
    Colloids Surf B Biointerfaces; 2016 Mar; 139():249-58. PubMed ID: 26724466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytotoxicity of Paclitaxel in biodegradable self-assembled core-shell poly(lactide-co-glycolide ethylene oxide fumarate) nanoparticles.
    He X; Ma J; Mercado AE; Xu W; Jabbari E
    Pharm Res; 2008 Jul; 25(7):1552-62. PubMed ID: 18196205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile assembly and loading of theranostic polymersomes via multi-impingement flash nanoprecipitation.
    Allen S; Osorio O; Liu YG; Scott E
    J Control Release; 2017 Sep; 262():91-103. PubMed ID: 28736263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flash nanoprecipitation: prediction and enhancement of particle stability via drug structure.
    Zhu Z
    Mol Pharm; 2014 Mar; 11(3):776-86. PubMed ID: 24484077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systemic delivery of nanoparticle formulation of novel tubulin inhibitor for treating metastatic melanoma.
    Mundra V; Peng Y; Kumar V; Li W; Miller DD; Mahato RI
    Drug Deliv Transl Res; 2015 Jun; 5(3):199-208. PubMed ID: 25924699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(L-Glutamic Acid)-Based Brush Copolymers: Fabrication, Self-assembly, and Evaluation as Efficient Nanocarriers for Cationic Protein Drug Delivery.
    Li X; Lu C; Xia W; Quan G; Huang Y; Bai X; Yu F; Xu Q; Qin W; Liu D; Pan X
    AAPS PharmSciTech; 2020 Jan; 21(3):78. PubMed ID: 31970547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of a Small-Scale Multi-Inlet Vortex Mixer for Scalable Nanoparticle Production and Application to the Encapsulation of Biologics by Inverse Flash NanoPrecipitation.
    Markwalter CE; Prud'homme RK
    J Pharm Sci; 2018 Sep; 107(9):2465-2471. PubMed ID: 29772223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PEGylated Biodegradable Polyesters for PGSS Microparticles Formulation: Processability, Physical and Release Properties.
    Perinelli DR; Cespi M; Bonacucina G; Naylor A; Whitaker M; Lam JK; Howdle SM; Casettari L; Palmieri GF
    Curr Drug Deliv; 2016; 13(5):673-81. PubMed ID: 26674199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of flash nanoprecipitation to fabricate poorly water-soluble drug nanoparticles.
    Tao J; Chow SF; Zheng Y
    Acta Pharm Sin B; 2019 Jan; 9(1):4-18. PubMed ID: 30766774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of biodegradable nanoparticles of tri-block PLA-PEG-PLA copolymer and determination of factors controlling the particle size using artificial neural network.
    Asadi H; Rostamizadeh K; Salari D; Hamidi M
    J Microencapsul; 2011; 28(5):406-16. PubMed ID: 21736525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and Characterization of Size-Controlled Nanoparticles for High-Loading λ-Cyhalothrin Delivery through Flash Nanoprecipitation.
    Chen K; Fu Z; Wang M; Lv Y; Wang C; Shen Y; Wang Y; Cui H; Guo X
    J Agric Food Chem; 2018 Aug; 66(31):8246-8252. PubMed ID: 30016093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly(lactic acid)-poly(ethylene glycol) nanoparticles as new carriers for the delivery of plasmid DNA.
    Perez C; Sanchez A; Putnam D; Ting D; Langer R; Alonso MJ
    J Control Release; 2001 Jul; 75(1-2):211-24. PubMed ID: 11451511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of surface chemistry of polymeric nanoparticles on cutaneous penetration of cholecalciferol.
    Lalloz A; Bolzinger MA; Faivre J; Latreille PL; Garcia Ac A; Rakotovao C; Rabanel JM; Hildgen P; Banquy X; Briançon S
    Int J Pharm; 2018 Dec; 553(1-2):120-131. PubMed ID: 30316003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability of Protein Structure during Nanocarrier Encapsulation: Insights on Solvent Effects from Simulations and Spectroscopic Analysis.
    Markwalter CE; Uralcan B; Pelczer I; Zarzhitsky S; Hecht MH; Prud'homme RK; Debenedetti PG
    ACS Nano; 2020 Dec; 14(12):16962-16972. PubMed ID: 33211493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solubilization of an amphiphilic drug by poly(ethylene oxide)-block-poly(ester) micelles.
    Elhasi S; Astaneh R; Lavasanifar A
    Eur J Pharm Biopharm; 2007 Mar; 65(3):406-13. PubMed ID: 17291732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.