These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 31898243)
1. Schizophrenia diagnosis using innovative EEG feature-level fusion schemes. Goshvarpour A; Goshvarpour A Australas Phys Eng Sci Med; 2020 Jan; ():. PubMed ID: 31898243 [TBL] [Abstract][Full Text] [Related]
2. A New Method Based on CEEMD Combined With Iterative Feature Reduction for Aided Diagnosis of Epileptic EEG. Zhou M; Bian K; Hu F; Lai W Front Bioeng Biotechnol; 2020; 8():669. PubMed ID: 32695761 [TBL] [Abstract][Full Text] [Related]
3. Binary classification of multichannel-EEG records based on the ϵ-complexity of continuous vector functions. Piryatinska A; Darkhovsky B; Kaplan A Comput Methods Programs Biomed; 2017 Dec; 152():131-139. PubMed ID: 29054253 [TBL] [Abstract][Full Text] [Related]
4. Fusion of pattern-based and statistical features for Schizophrenia detection from EEG signals. Agarwal M; Singhal A Med Eng Phys; 2023 Feb; 112():103949. PubMed ID: 36842772 [TBL] [Abstract][Full Text] [Related]
5. An automated detection of epileptic seizures EEG using CNN classifier based on feature fusion with high accuracy. Chen W; Wang Y; Ren Y; Jiang H; Du G; Zhang J; Li J BMC Med Inform Decis Mak; 2023 May; 23(1):96. PubMed ID: 37217878 [TBL] [Abstract][Full Text] [Related]
6. Entropy and complexity measures for EEG signal classification of schizophrenic and control participants. Sabeti M; Katebi S; Boostani R Artif Intell Med; 2009 Nov; 47(3):263-74. PubMed ID: 19403281 [TBL] [Abstract][Full Text] [Related]
7. Motor intent recognition of multi-feature fusion EEG signals by UMAP algorithm. Du Y; Sui J; Wang S; Fu R; Jia C Med Biol Eng Comput; 2023 Oct; 61(10):2665-2676. PubMed ID: 37421553 [TBL] [Abstract][Full Text] [Related]
8. A novel channel selection scheme for olfactory EEG signal classification on Riemannian manifolds. Zhang XN; Meng QH; Zeng M J Neural Eng; 2022 Jul; 19(4):. PubMed ID: 35732136 [No Abstract] [Full Text] [Related]
9. A PCA aided cross-covariance scheme for discriminative feature extraction from EEG signals. Zarei R; He J; Siuly S; Zhang Y Comput Methods Programs Biomed; 2017 Jul; 146():47-57. PubMed ID: 28688489 [TBL] [Abstract][Full Text] [Related]
10. A Computerized Method for Automatic Detection of Schizophrenia Using EEG Signals. Siuly S; Khare SK; Bajaj V; Wang H; Zhang Y IEEE Trans Neural Syst Rehabil Eng; 2020 Nov; 28(11):2390-2400. PubMed ID: 32897863 [TBL] [Abstract][Full Text] [Related]
11. A major depressive disorder classification framework based on EEG signals using statistical, spectral, wavelet, functional connectivity, and nonlinear analysis. Movahed RA; Jahromi GP; Shahyad S; Meftahi GH J Neurosci Methods; 2021 Jul; 358():109209. PubMed ID: 33957158 [TBL] [Abstract][Full Text] [Related]
12. Multi-Feature Fusion Method Based on EEG Signal and its Application in Stroke Classification. Li F; Fan Y; Zhang X; Wang C; Hu F; Jia W; Hui H J Med Syst; 2019 Dec; 44(2):39. PubMed ID: 31865469 [TBL] [Abstract][Full Text] [Related]
13. Using Electroencephalogram-Extracted Nonlinear Complexity and Wavelet-Extracted Power Rhythm Features during the Performance of Demanding Cognitive Tasks (Aristotle's Syllogisms) in Optimally Classifying Patients with Anorexia Nervosa. Karavia A; Papaioannou A; Michopoulos I; Papageorgiou PC; Papaioannou G; Gonidakis F; Papageorgiou CC Brain Sci; 2024 Mar; 14(3):. PubMed ID: 38539639 [TBL] [Abstract][Full Text] [Related]
14. A self-learned decomposition and classification model for schizophrenia diagnosis. Khare SK; Bajaj V Comput Methods Programs Biomed; 2021 Nov; 211():106450. PubMed ID: 34619600 [TBL] [Abstract][Full Text] [Related]
15. Schizophrenia Detection in Adolescents from EEG Signals using Symmetrically weighted Local Binary Patterns. Rajesh KNVPS; Sunil Kumar T Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():963-966. PubMed ID: 34891449 [TBL] [Abstract][Full Text] [Related]
16. Cross-subject classification of depression by using multiparadigm EEG feature fusion. Yang J; Zhang Z; Fu Z; Li B; Xiong P; Liu X Comput Methods Programs Biomed; 2023 May; 233():107360. PubMed ID: 36944276 [TBL] [Abstract][Full Text] [Related]
17. A feature extraction technique based on tunable Q-factor wavelet transform for brain signal classification. Al Ghayab HR; Li Y; Siuly S; Abdulla S J Neurosci Methods; 2019 Jan; 312():43-52. PubMed ID: 30468823 [TBL] [Abstract][Full Text] [Related]
18. A Narrative Review of Speech and EEG Features for Schizophrenia Detection: Progress and Challenges. Teixeira FL; Costa MRE; Abreu JP; Cabral M; Soares SP; Teixeira JP Bioengineering (Basel); 2023 Apr; 10(4):. PubMed ID: 37106680 [TBL] [Abstract][Full Text] [Related]
19. EEG emotion recognition based on cross-frequency granger causality feature extraction and fusion in the left and right hemispheres. Zhang J; Zhang X; Chen G; Huang L; Sun Y Front Neurosci; 2022; 16():974673. PubMed ID: 36161187 [TBL] [Abstract][Full Text] [Related]
20. Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal. Hosseinifard B; Moradi MH; Rostami R Comput Methods Programs Biomed; 2013 Mar; 109(3):339-45. PubMed ID: 23122719 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]