These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 31898693)

  • 1. Realization of Lieb lattice in covalent-organic frameworks with tunable topology and magnetism.
    Cui B; Zheng X; Wang J; Liu D; Xie S; Huang B
    Nat Commun; 2020 Jan; 11(1):66. PubMed ID: 31898693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Lieb-like lattice in a covalent-organic framework and its Stoner ferromagnetism.
    Jiang W; Huang H; Liu F
    Nat Commun; 2019 May; 10(1):2207. PubMed ID: 31101812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exotic Topological Bands and Quantum States in Metal-Organic and Covalent-Organic Frameworks.
    Jiang W; Ni X; Liu F
    Acc Chem Res; 2021 Jan; 54(2):416-426. PubMed ID: 33400497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Topological Band Engineering of Lieb Lattice in Phthalocyanine-Based Metal-Organic Frameworks.
    Jiang W; Zhang S; Wang Z; Liu F; Low T
    Nano Lett; 2020 Mar; 20(3):1959-1966. PubMed ID: 32078326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Realization of a 2D Lieb Lattice in a Metal-Inorganic Framework with Partial Flat Bands and Topological Edge States.
    Wu W; Sun S; Tang CS; Wu J; Ma Y; Zhang L; Cai C; Zhong J; Milošević MV; Wee ATS; Yin X
    Adv Mater; 2024 Oct; 36(40):e2405615. PubMed ID: 39180271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental realization and characterization of an electronic Lieb lattice.
    Slot MR; Gardenier TS; Jacobse PH; van Miert GCP; Kempkes SN; Zevenhuizen SJM; Smith CM; Vanmaekelbergh D; Swart I
    Nat Phys; 2017 Jul; 13(7):672-676. PubMed ID: 28706560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ag
    Yang T; Luo YZ; Wang Z; Zhu T; Pan H; Wang S; Lau SP; Feng YP; Yang M
    Nanoscale; 2021 Sep; 13(33):14008-14015. PubMed ID: 34477681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enantiomorphic kagome bands in a two-dimensional covalent organic framework with non-trivial magnetic and topological properties.
    Gao Q; Sun X; Xu X; Jiang X; Wang Z; Yang L; Li D; Cui B; Liu D
    Phys Chem Chem Phys; 2024 Jan; 26(3):2066-2072. PubMed ID: 38126725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Author Correction: Realization of Lieb lattice in covalent-organic frameworks with tunable topology and magnetism.
    Cui B; Zheng X; Wang J; Liu D; Xie S; Huang B
    Nat Commun; 2020 Jan; 11(1):677. PubMed ID: 31996682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic
    Zhang Y; Zhao S; Položij M; Heine T
    Chem Sci; 2024 Apr; 15(15):5757-5763. PubMed ID: 38638224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental Realization of Two-Dimensional Buckled Lieb Lattice.
    Feng H; Liu C; Zhou S; Gao N; Gao Q; Zhuang J; Xu X; Hu Z; Wang J; Chen L; Zhao J; Dou SX; Du Y
    Nano Lett; 2020 Apr; 20(4):2537-2543. PubMed ID: 32182079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental realization of a reconfigurable Lieb photonic lattice in a coherent atomic medium.
    Liang S; Liu Z; Ning S; Zhang Y; Zhang Z
    Opt Lett; 2023 Feb; 48(3):803-806. PubMed ID: 36723593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anomalous plasmons in a two-dimensional Dirac nodal-line Lieb lattice.
    Ding C; Gao H; Geng W; Zhao M
    Nanoscale Adv; 2021 Feb; 3(4):1127-1135. PubMed ID: 36133292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering of flat bands and Dirac bands in two-dimensional covalent organic frameworks (COFs): relationships among molecular orbital symmetry, lattice symmetry, and electronic-structure characteristics.
    Ni X; Li H; Liu F; Brédas JL
    Mater Horiz; 2022 Jan; 9(1):88-98. PubMed ID: 34866138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonplanar Rhombus and Kagome 2D Covalent Organic Frameworks from Distorted Aromatics for Electrical Conduction.
    Xing G; Zheng W; Gao L; Zhang T; Wu X; Fu S; Song X; Zhao Z; Osella S; Martínez-Abadía M; Wang HI; Cai J; Mateo-Alonso A; Chen L
    J Am Chem Soc; 2022 Mar; 144(11):5042-5050. PubMed ID: 35189061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compact localized states in magnonic Lieb lattices.
    Centała G; Kłos JW
    Sci Rep; 2023 Aug; 13(1):12676. PubMed ID: 37542063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion-Conductive Metallo-Covalent Organic Frameworks Constructed with Tridentate Ligand and Zn Nodes.
    Chen F; Zhang K; Yuan Y; Wong WP; Wang G; Li X; Wang L; Li R; Wu Z; Lin J; Xu HS; Loh KP
    J Am Chem Soc; 2023 Nov; 145(46):25341-25351. PubMed ID: 37956115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupling double flat bands in a quadrangular-star lattice.
    Jiang J; Jiang W; Zhang S; Xie Y; Chen Y
    Nanoscale; 2023 May; 15(19):8825-8831. PubMed ID: 37114430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the similarity of single-layer covalent organic frameworks using electronic structure calculations.
    Raptakis A; Croy A; Dianat A; Gutierrez R; Cuniberti G
    RSC Adv; 2022 Apr; 12(20):12283-12291. PubMed ID: 35480357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emergence of an Antiferromagnetic Mott Insulating Phase in Hexagonal π-Conjugated Covalent Organic Frameworks.
    Thomas S; Li H; Bredas JL
    Adv Mater; 2019 Apr; 31(17):e1900355. PubMed ID: 30847999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.