BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 31898701)

  • 1. Ultrafast star-shaped acoustic micromixer for high throughput nanoparticle synthesis.
    An Le NH; Deng H; Devendran C; Akhtar N; Ma X; Pouton C; Chan HK; Neild A; Alan T
    Lab Chip; 2020 Feb; 20(3):582-591. PubMed ID: 31898701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Lotus shaped acoustofluidic mixer: High throughput homogenisation of liquids in 2 ms using hydrodynamically coupled resonators.
    Pourabed A; Brenker J; Younas T; He L; Alan T
    Ultrason Sonochem; 2022 Feb; 83():105936. PubMed ID: 35144192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mixing high-viscosity fluids via acoustically driven bubbles.
    Orbay S; Ozcelik A; Lata J; Kaynak M; Wu M; Huang TJ
    J Micromech Microeng; 2017; 27(1):. PubMed ID: 31588165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An acoustofluidic device for efficient mixing over a wide range of flow rates.
    Bachman H; Chen C; Rufo J; Zhao S; Yang S; Tian Z; Nama N; Huang PH; Huang TJ
    Lab Chip; 2020 Apr; 20(7):1238-1248. PubMed ID: 32104816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A microfluidic finger-actuated blood lysate preparation device enabled by rapid acoustofluidic mixing.
    Haque ME; Conde AJ; MacPherson WN; Knight SR; Carter RM; Kersaudy-Kerhoas M
    Lab Chip; 2022 Dec; 23(1):62-71. PubMed ID: 36477089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An ultra-rapid acoustic micromixer for synthesis of organic nanoparticles.
    Rasouli MR; Tabrizian M
    Lab Chip; 2019 Oct; 19(19):3316-3325. PubMed ID: 31495858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monolithic 3D micromixer with an impeller for glass microfluidic systems.
    Kim S; Kim J; Joung YH; Ahn S; Park C; Choi J; Koo C
    Lab Chip; 2020 Nov; 20(23):4474-4485. PubMed ID: 33108430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High throughput acoustic microfluidic mixer controls self-assembly of protein nanoparticles with tuneable sizes.
    Pourabed A; Younas T; Liu C; Shanbhag BK; He L; Alan T
    J Colloid Interface Sci; 2021 Mar; 585():229-236. PubMed ID: 33285461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multi-vortex micromixer based on the synergy of acoustics and inertia for nanoparticle synthesis.
    Lu Y; Tan W; Mu S; Zhu G
    Anal Chim Acta; 2023 Jan; 1239():340742. PubMed ID: 36628735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustically enhanced microfluidic mixer to synthesize highly uniform nanodrugs without the addition of stabilizers.
    Le NHA; Van Phan H; Yu J; Chan HK; Neild A; Alan T
    Int J Nanomedicine; 2018; 13():1353-1359. PubMed ID: 29563792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An acoustofluidic micromixer via bubble inception and cavitation from microchannel sidewalls.
    Ozcelik A; Ahmed D; Xie Y; Nama N; Qu Z; Nawaz AA; Huang TJ
    Anal Chem; 2014 May; 86(10):5083-8. PubMed ID: 24754496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simple acoustofluidic device for on-chip fabrication of PLGA nanoparticles.
    Ozcelik A; Aslan Z
    Biomicrofluidics; 2022 Jan; 16(1):014103. PubMed ID: 35154554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Microfluidic Mixer of High Throughput Fabricated in Glass Using Femtosecond Laser Micromachining Combined with Glass Bonding.
    Qi J; Li W; Chu W; Yu J; Wu M; Liang Y; Yin D; Wang P; Wang Z; Wang M; Cheng Y
    Micromachines (Basel); 2020 Feb; 11(2):. PubMed ID: 32093086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of passive mixers utilizing microfluidic self-circulation in the mixing chamber.
    Chung YC; Hsu YL; Jen CP; Lu MC; Lin YC
    Lab Chip; 2004 Feb; 4(1):70-7. PubMed ID: 15007444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid mixing with high-throughput in a semi-active semi-passive micromixer.
    Kunti G; Bhattacharya A; Chakraborty S
    Electrophoresis; 2017 May; 38(9-10):1310-1317. PubMed ID: 28256732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced model-based design of a high-throughput three dimensional micromixer driven by alternating-current electrothermal flow.
    Wu Y; Ren Y; Jiang H
    Electrophoresis; 2017 Jan; 38(2):258-269. PubMed ID: 27387819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A star shaped acoustofluidic mixer enhances rapid malaria diagnostics
    Pourabed A; Chakkumpulakkal Puthan Veettil T; Devendran C; Nair P; Wood BR; Alan T
    Lab Chip; 2022 May; 22(9):1829-1840. PubMed ID: 35380576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On-demand acoustic droplet splitting and steering in a disposable microfluidic chip.
    Park J; Jung JH; Park K; Destgeer G; Ahmed H; Ahmad R; Sung HJ
    Lab Chip; 2018 Jan; 18(3):422-432. PubMed ID: 29220055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel in-plane passive microfluidic mixer with modified Tesla structures.
    Hong CC; Choi JW; Ahn CH
    Lab Chip; 2004 Apr; 4(2):109-13. PubMed ID: 15052349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical simulation and parameter optimization of micromixer device using fuzzy logic technique.
    K K; Kandasamy SK; P S; Alodhayb A
    RSC Adv; 2023 Jan; 13(7):4504-4522. PubMed ID: 36760289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.