These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 31898702)

  • 21. Development of Microfluidic Dilution Network-Based System for Lab-on-a-Chip Microalgal Bioassays.
    Zheng G; Lu L; Yang Y; Wei J; Han B; Zhang Q; Wang Y
    Anal Chem; 2018 Nov; 90(22):13280-13289. PubMed ID: 30345743
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rapid spheroid clearing on a microfluidic chip.
    Silva Santisteban T; Rabajania O; Kalinina I; Robinson S; Meier M
    Lab Chip; 2017 Dec; 18(1):153-161. PubMed ID: 29192297
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A microdevice for rapid, monoplex and colorimetric detection of foodborne pathogens using a centrifugal microfluidic platform.
    Sayad A; Ibrahim F; Mukim Uddin S; Cho J; Madou M; Thong KL
    Biosens Bioelectron; 2018 Feb; 100():96-104. PubMed ID: 28869845
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lateral and cross-lateral focusing of spherical particles in a square microchannel.
    Choi YS; Seo KW; Lee SJ
    Lab Chip; 2011 Feb; 11(3):460-5. PubMed ID: 21072415
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Active pneumatic control of centrifugal microfluidic flows for lab-on-a-chip applications.
    Clime L; Brassard D; Geissler M; Veres T
    Lab Chip; 2015 Jun; 15(11):2400-11. PubMed ID: 25860103
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Microfluidic Biodisplay.
    Volpetti F; Petrova E; Maerkl SJ
    ACS Synth Biol; 2017 Nov; 6(11):1979-1987. PubMed ID: 28771313
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microfluidics in structured multimaterial fibers.
    Yuan R; Lee J; Su HW; Levy E; Khudiyev T; Voldman J; Fink Y
    Proc Natl Acad Sci U S A; 2018 Nov; 115(46):E10830-E10838. PubMed ID: 30373819
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fine temporal control of the medium gas content and acidity and on-chip generation of series of oxygen concentrations for cell cultures.
    Polinkovsky M; Gutierrez E; Levchenko A; Groisman A
    Lab Chip; 2009 Apr; 9(8):1073-84. PubMed ID: 19350089
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Liquid density effect on burst frequency in centrifugal microfluidic platforms.
    Al-Faqheri W; Ibrahim F; Thio TH; Joseph K; Mohktar MS; Madou M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3221-4. PubMed ID: 26736978
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A simple method for the evaluation of microfluidic architecture using flow quantitation via a multiplexed fluidic resistance measurement.
    Leslie DC; Melnikoff BA; Marchiarullo DJ; Cash DR; Ferrance JP; Landers JP
    Lab Chip; 2010 Aug; 10(15):1960-6. PubMed ID: 20707008
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Micromachining of Polymeric Microfluidic Micro/Nanoelectroporation Device.
    Li L
    Methods Mol Biol; 2020; 2050():21-27. PubMed ID: 31468476
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Carbon nanotubes for voltage reduction and throughput enhancement of electrical cell lysis on a lab-on-a-chip.
    Shahini M; Yeow JT
    Nanotechnology; 2011 Aug; 22(32):325705. PubMed ID: 21775777
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oxygen control with microfluidics.
    Brennan MD; Rexius-Hall ML; Elgass LJ; Eddington DT
    Lab Chip; 2014 Nov; 14(22):4305-18. PubMed ID: 25251498
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Emergent behaviors in RBCs flows in micro-channels using digital particle image velocimetry.
    Cairone F; Ortiz D; Cabrales PJ; Intaglietta M; Bucolo M
    Microvasc Res; 2018 Mar; 116():77-86. PubMed ID: 28918110
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of Culture Conditions on Cell Proliferation in a Microfluidic Channel.
    Sato K; Sato M; Yokoyama M; Hirai M; Furuta A
    Anal Sci; 2019 Jan; 35(1):49-56. PubMed ID: 30473567
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A lab-in-a-droplet bioassay strategy for centrifugal microfluidics with density difference pumping, power to disc and bidirectional flow control.
    Wang G; Ho HP; Chen Q; Yang AK; Kwok HC; Wu SY; Kong SK; Kwan YW; Zhang X
    Lab Chip; 2013 Sep; 13(18):3698-706. PubMed ID: 23881222
    [TBL] [Abstract][Full Text] [Related]  

  • 37. System-level network simulation for robust centrifugal-microfluidic lab-on-a-chip systems.
    Schwarz I; Zehnle S; Hutzenlaub T; Zengerle R; Paust N
    Lab Chip; 2016 May; 16(10):1873-85. PubMed ID: 27095248
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Effect of Moment of Inertia on the Liquids in Centrifugal Microfluidics.
    Pishbin E; Eghbal M; Fakhari S; Kazemzadeh A; Navidbakhsh M
    Micromachines (Basel); 2016 Dec; 7(12):. PubMed ID: 30404391
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The power of solid supports in multiphase and droplet-based microfluidics: towards clinical applications.
    Serra M; Ferraro D; Pereiro I; Viovy JL; Descroix S
    Lab Chip; 2017 Nov; 17(23):3979-3999. PubMed ID: 28948991
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wirelessly addressable heater array for centrifugal microfluidics and Escherichia coli sterilization.
    Chen X; Song L; Assadsangabi B; Fang J; Mohamed Ali MS; Takahata K
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5505-8. PubMed ID: 24110983
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.