BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 31898708)

  • 21. The aerolysin nanopore: from peptidomic to genomic applications.
    Wang Y; Gu LQ; Tian K
    Nanoscale; 2018 Aug; 10(29):13857-13866. PubMed ID: 29998253
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Wild-Type Nanopore Sensor for Protein Kinase Activity.
    Meng FN; Ying YL; Yang J; Long YT
    Anal Chem; 2019 Aug; 91(15):9910-9915. PubMed ID: 31241901
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Precise Structural Analysis of Neutral Glycans Using Aerolysin Mutant T240R Nanopore.
    Lu W; Zhao X; Li M; Li Y; Zhang C; Xiong Y; Li J; Zhou H; Ye X; Li X; Wang J; Liang X; Qing G
    ACS Nano; 2024 May; 18(19):12412-12426. PubMed ID: 38693619
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Single molecule detection of glycosaminoglycan hyaluronic acid oligosaccharides and depolymerization enzyme activity using a protein nanopore.
    Fennouri A; Przybylski C; Pastoriza-Gallego M; Bacri L; Auvray L; Daniel R
    ACS Nano; 2012 Nov; 6(11):9672-8. PubMed ID: 23046010
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synchronous screening of multiplexed biomarkers of Alzheimer's disease by a length-encoded aerolysin nanopore-integrated triple-helix molecular switch.
    Zou Z; Yang H; Yan Q; Qi P; Qing Z; Zheng J; Xu X; Zhang L; Feng F; Yang R
    Chem Commun (Camb); 2019 May; 55(45):6433-6436. PubMed ID: 31095138
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Unveiling the Heterogenous Dephosphorylation of DNA Using an Aerolysin Nanopore.
    Li MY; Ying YL; Li S; Wang YQ; Wu XY; Long YT
    ACS Nano; 2020 Oct; 14(10):12571-12578. PubMed ID: 32806044
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A General Strategy of Aerolysin Nanopore Detection for Oligonucleotides with the Secondary Structure.
    Liao DF; Cao C; Ying YL; Long YT
    Small; 2018 May; 14(18):e1704520. PubMed ID: 29603609
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermal unfolding of proteins probed at the single molecule level using nanopores.
    Payet L; Martinho M; Pastoriza-Gallego M; Betton JM; Auvray L; Pelta J; Mathé J
    Anal Chem; 2012 May; 84(9):4071-6. PubMed ID: 22486207
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Driven Translocation of Polynucleotides Through an Aerolysin Nanopore.
    Cao C; Yu J; Wang YQ; Ying YL; Long YT
    Anal Chem; 2016 May; 88(10):5046-9. PubMed ID: 27120503
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Single-molecule electrophoresis: renewed understanding of nanopore electrochemistry].
    Zhang WW; Ying YL; Long YT
    Se Pu; 2020 Sep; 38(9):993-998. PubMed ID: 34213265
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced identification of Tau acetylation and phosphorylation with an engineered aerolysin nanopore.
    Huo MZ; Hu ZL; Ying YL; Long YT
    Proteomics; 2022 Mar; 22(5-6):e2100041. PubMed ID: 34545670
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultrasensitive Detection of Cancer Cells Combining Enzymatic Signal Amplification with an Aerolysin Nanopore.
    Xi D; Li Z; Liu L; Ai S; Zhang S
    Anal Chem; 2018 Jan; 90(1):1029-1034. PubMed ID: 29210271
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Real-Time and Accurate Identification of Single Oligonucleotide Photoisomers via an Aerolysin Nanopore.
    Hu ZL; Li ZY; Ying YL; Zhang J; Cao C; Long YT; Tian H
    Anal Chem; 2018 Apr; 90(7):4268-4272. PubMed ID: 29516718
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A rivet model for channel formation by aerolysin-like pore-forming toxins.
    Iacovache I; Paumard P; Scheib H; Lesieur C; Sakai N; Matile S; Parker MW; van der Goot FG
    EMBO J; 2006 Feb; 25(3):457-66. PubMed ID: 16424900
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Profiling the chemistry- and confinement-controlled sensing capability of an octameric aerolysin-like protein.
    Wu XY; Jiang J; Li JG; Li MY; Long YT
    Chem Commun (Camb); 2023 May; 59(39):5850-5853. PubMed ID: 37098687
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Probing driving forces in aerolysin and α-hemolysin biological nanopores: electrophoresis versus electroosmosis.
    Boukhet M; Piguet F; Ouldali H; Pastoriza-Gallego M; Pelta J; Oukhaled A
    Nanoscale; 2016 Nov; 8(43):18352-18359. PubMed ID: 27762420
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular assembly of the aerolysin pore reveals a swirling membrane-insertion mechanism.
    Degiacomi MT; Iacovache I; Pernot L; Chami M; Kudryashev M; Stahlberg H; van der Goot FG; Dal Peraro M
    Nat Chem Biol; 2013 Oct; 9(10):623-9. PubMed ID: 23912165
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single Molecule Study of Hydrogen Bond Interactions Between Single Oligonucleotide and Aerolysin Sensing Interface.
    Li MY; Wang YQ; Lu Y; Ying YL; Long YT
    Front Chem; 2019; 7():528. PubMed ID: 31417894
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanopore-Based Protein Identification.
    Afshar Bakshloo M; Kasianowicz JJ; Pastoriza-Gallego M; Mathé J; Daniel R; Piguet F; Oukhaled A
    J Am Chem Soc; 2022 Feb; 144(6):2716-2725. PubMed ID: 35120294
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Direct Readout of Single Nucleobase Variations in an Oligonucleotide.
    Cao C; Yu J; Li MY; Wang YQ; Tian H; Long YT
    Small; 2017 Nov; 13(44):. PubMed ID: 29024329
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.