These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 31898755)
21. Three-dimensional graphene oxide foams loaded with AuPd alloy: a sensitive electrochemical sensor for dopamine. Hou Y; Sheng K; Lu Y; Ma C; Liu W; Men X; Xu L; Yin S; Dong B; Bai X; Song H Mikrochim Acta; 2018 Aug; 185(8):397. PubMed ID: 30069640 [TBL] [Abstract][Full Text] [Related]
22. In situ electrochemical synthesis of highly loaded zirconium nanoparticles decorated reduced graphene oxide for the selective determination of dopamine and paracetamol in presence of ascorbic acid. Ezhil Vilian AT; Rajkumar M; Chen SM Colloids Surf B Biointerfaces; 2014 Mar; 115():295-301. PubMed ID: 24384145 [TBL] [Abstract][Full Text] [Related]
23. Enhanced electrocatalytic activity of graphene-gold nanoparticles hybrids for peroxynitrite electrochemical detection on hemin-based electrode. Wang B; Ji X; Ren J; Ni R; Wang L Bioelectrochemistry; 2017 Dec; 118():75-82. PubMed ID: 28746901 [TBL] [Abstract][Full Text] [Related]
24. Sensitive determination of nitrite by using an electrode modified with hierarchical three-dimensional tungsten disulfide and reduced graphene oxide aerogel. Ma X; Gao F; Liu G; Xie Y; Tu X; Li Y; Dai R; Qu F; Wang W; Lu L Mikrochim Acta; 2019 Apr; 186(5):291. PubMed ID: 31016395 [TBL] [Abstract][Full Text] [Related]
26. Superlattice stacking by hybridizing layered double hydroxide nanosheets with layers of reduced graphene oxide for electrochemical simultaneous determination of dopamine, uric acid and ascorbic acid. Asif M; Aziz A; Wang H; Wang Z; Wang W; Ajmal M; Xiao F; Chen X; Liu H Mikrochim Acta; 2019 Jan; 186(2):61. PubMed ID: 30627779 [TBL] [Abstract][Full Text] [Related]
27. Controlled modification of electrochemical microsystems with polyethylenimine/reduced graphene oxide using electrophoretic deposition: Sensing of dopamine levels in meat samples. Kahlouche K; Jijie R; Hosu I; Barras A; Gharbi T; Yahiaoui R; Herlem G; Ferhat M; Szunerits S; Boukherroub R Talanta; 2018 Feb; 178():432-440. PubMed ID: 29136845 [TBL] [Abstract][Full Text] [Related]
28. Silver Nanoparticle Modified Electrode Covered by Graphene Oxide for the Enhanced Electrochemical Detection of Dopamine. Shin JW; Kim KJ; Yoon J; Jo J; El-Said WA; Choi JW Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29186040 [TBL] [Abstract][Full Text] [Related]
29. Reduced graphene oxide/nile blue/gold nanoparticles complex-modified glassy carbon electrode used as a sensitive and label-free aptasensor for ratiometric electrochemical sensing of dopamine. Jin H; Zhao C; Gui R; Gao X; Wang Z Anal Chim Acta; 2018 Sep; 1025():154-162. PubMed ID: 29801604 [TBL] [Abstract][Full Text] [Related]
30. Reduced graphene oxide nanosheets modified with plasmonic gold-based hybrid nanostructures and with magnetite (Fe Zhao Z; Li C; Wu H Mikrochim Acta; 2019 Mar; 186(4):226. PubMed ID: 30848370 [TBL] [Abstract][Full Text] [Related]
31. Redox-active thionine-graphene oxide hybrid nanosheet: one-pot, rapid synthesis, and application as a sensing platform for uric acid. Sun Z; Fu H; Deng L; Wang J Anal Chim Acta; 2013 Jan; 761():84-91. PubMed ID: 23312318 [TBL] [Abstract][Full Text] [Related]
32. The comparison of different gold nanoparticles/graphene nanosheets hybrid nanocomposites in electrochemical performance and the construction of a sensitive uric acid electrochemical sensor with novel hybrid nanocomposites. Xue Y; Zhao H; Wu Z; Li X; He Y; Yuan Z Biosens Bioelectron; 2011 Nov; 29(1):102-8. PubMed ID: 21871789 [TBL] [Abstract][Full Text] [Related]
33. High-sensitivity ascorbic acid sensor using graphene sheet/graphene nanoribbon hybrid material as an enhanced electrochemical sensing platform. Lavanya J; Gomathi N Talanta; 2015 Nov; 144():655-61. PubMed ID: 26452874 [TBL] [Abstract][Full Text] [Related]
34. Real-time electrochemical detection of hydrogen peroxide secretion in live cells by Pt nanoparticles decorated graphene-carbon nanotube hybrid paper electrode. Sun Y; He K; Zhang Z; Zhou A; Duan H Biosens Bioelectron; 2015 Jun; 68():358-364. PubMed ID: 25603401 [TBL] [Abstract][Full Text] [Related]
35. Electrochemical Detection of Dopamine Using 3D Porous Graphene Oxide/Gold Nanoparticle Composites. Choo SS; Kang ES; Song I; Lee D; Choi JW; Kim TH Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28420085 [TBL] [Abstract][Full Text] [Related]
36. Electrochemical dopamine sensor using a nanoporous gold microelectrode: a proof-of-concept study for the detection of dopamine release by scanning electrochemical microscopy. Sáenz HSC; Hernández-Saravia LP; Selva JSG; Sukeri A; Espinoza-Montero PJ; Bertotti M Mikrochim Acta; 2018 Jul; 185(8):367. PubMed ID: 29987397 [TBL] [Abstract][Full Text] [Related]
37. Synthesis of CuO/g-C Huang Y; Tan Y; Feng C; Wang S; Wu H; Zhang G Mikrochim Acta; 2018 Dec; 186(1):10. PubMed ID: 30535514 [TBL] [Abstract][Full Text] [Related]
38. Three-dimensional zinc oxide nanostars anchored on graphene oxide for voltammetric determination of methyl parathion. Manavalan S; Veerakumar P; Chen SM; Lin KC Mikrochim Acta; 2019 Dec; 187(1):17. PubMed ID: 31807937 [TBL] [Abstract][Full Text] [Related]
39. Graphene nanosheets modified with curcumin-decorated manganese dioxide for ultrasensitive potentiometric sensing of mercury(II), fluoride and cyanide. Mejri A; Mars A; Elfil H; Hamzaoui AH Mikrochim Acta; 2018 Nov; 185(12):529. PubMed ID: 30402665 [TBL] [Abstract][Full Text] [Related]
40. Electrochemical Co-Reduction Synthesis of AuPt Bimetallic Nanoparticles-Graphene Nanocomposites for Selective Detection of Dopamine in the Presence of Ascorbic Acid and Uric Acid. Zhao Z; Zhang M; Chen X; Li Y; Wang J Sensors (Basel); 2015 Jul; 15(7):16614-31. PubMed ID: 26184200 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]