These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 31898840)

  • 1. A Transfer-Learning Approach for Accelerated MRI Using Deep Neural Networks.
    Dar SUH; Özbey M; Çatlı AB; Çukur T
    Magn Reson Med; 2020 Aug; 84(2):663-685. PubMed ID: 31898840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transfer learning in deep neural network based under-sampled MR image reconstruction.
    Arshad M; Qureshi M; Inam O; Omer H
    Magn Reson Imaging; 2021 Feb; 76():96-107. PubMed ID: 32980504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A deep learning approach for synthetic MRI based on two routine sequences and training with synthetic data.
    Moya-Sáez E; Peña-Nogales Ó; Luis-García R; Alberola-López C
    Comput Methods Programs Biomed; 2021 Oct; 210():106371. PubMed ID: 34525411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic MR image quality evaluation using a Deep CNN: A reference-free method to rate motion artifacts in neuroimaging.
    Fantini I; Yasuda C; Bento M; Rittner L; Cendes F; Lotufo R
    Comput Med Imaging Graph; 2021 Jun; 90():101897. PubMed ID: 33770561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain tumor classification for MR images using transfer learning and fine-tuning.
    Swati ZNK; Zhao Q; Kabir M; Ali F; Ali Z; Ahmed S; Lu J
    Comput Med Imaging Graph; 2019 Jul; 75():34-46. PubMed ID: 31150950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AI-driven attenuation correction for brain PET/MRI: Clinical evaluation of a dementia cohort and importance of the training group size.
    Ladefoged CN; Hansen AE; Henriksen OM; Bruun FJ; Eikenes L; Øen SK; Karlberg A; Højgaard L; Law I; Andersen FL
    Neuroimage; 2020 Nov; 222():117221. PubMed ID: 32750498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstruction of multicontrast MR images through deep learning.
    Do WJ; Seo S; Han Y; Ye JC; Choi SH; Park SH
    Med Phys; 2020 Mar; 47(3):983-997. PubMed ID: 31889314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving resolution of MR images with an adversarial network incorporating images with different contrast.
    Kim KH; Do WJ; Park SH
    Med Phys; 2018 Jul; 45(7):3120-3131. PubMed ID: 29729006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transfer learning enhanced generative adversarial networks for multi-channel MRI reconstruction.
    Lv J; Li G; Tong X; Chen W; Huang J; Wang C; Yang G
    Comput Biol Med; 2021 Jul; 134():104504. PubMed ID: 34062366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. KIKI-net: cross-domain convolutional neural networks for reconstructing undersampled magnetic resonance images.
    Eo T; Jun Y; Kim T; Jang J; Lee HJ; Hwang D
    Magn Reson Med; 2018 Nov; 80(5):2188-2201. PubMed ID: 29624729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Region-of-interest undersampled MRI reconstruction: A deep convolutional neural network approach.
    Sun L; Fan Z; Ding X; Huang Y; Paisley J
    Magn Reson Imaging; 2019 Nov; 63():185-192. PubMed ID: 31352015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeted transfer learning to improve performance in small medical physics datasets.
    Romero M; Interian Y; Solberg T; Valdes G
    Med Phys; 2020 Dec; 47(12):6246-6256. PubMed ID: 33007112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesizing CT images from MR images with deep learning: model generalization for different datasets through transfer learning.
    Li W; Kazemifar S; Bai T; Nguyen D; Weng Y; Li Y; Xia J; Xiong J; Xie Y; Owrangi A; Jiang S
    Biomed Phys Eng Express; 2021 Feb; 7(2):. PubMed ID: 33545707
    [No Abstract]   [Full Text] [Related]  

  • 14. MR-based synthetic CT generation using a deep convolutional neural network method.
    Han X
    Med Phys; 2017 Apr; 44(4):1408-1419. PubMed ID: 28192624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complementary time-frequency domain networks for dynamic parallel MR image reconstruction.
    Qin C; Duan J; Hammernik K; Schlemper J; Küstner T; Botnar R; Prieto C; Price AN; Hajnal JV; Rueckert D
    Magn Reson Med; 2021 Dec; 86(6):3274-3291. PubMed ID: 34254355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic evaluation of iterative deep neural networks for fast parallel MRI reconstruction with sensitivity-weighted coil combination.
    Hammernik K; Schlemper J; Qin C; Duan J; Summers RM; Rueckert D
    Magn Reson Med; 2021 Oct; 86(4):1859-1872. PubMed ID: 34110037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MRI Gibbs-ringing artifact reduction by means of machine learning using convolutional neural networks.
    Zhang Q; Ruan G; Yang W; Liu Y; Zhao K; Feng Q; Chen W; Wu EX; Feng Y
    Magn Reson Med; 2019 Dec; 82(6):2133-2145. PubMed ID: 31373061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Knowledge-driven deep learning for fast MR imaging: Undersampled MR image reconstruction from supervised to un-supervised learning.
    Wang S; Wu R; Jia S; Diakite A; Li C; Liu Q; Zheng H; Ying L
    Magn Reson Med; 2024 Aug; 92(2):496-518. PubMed ID: 38624162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transfer learning improves resting-state functional connectivity pattern analysis using convolutional neural networks.
    Vakli P; Deák-Meszlényi RJ; Hermann P; Vidnyánszky Z
    Gigascience; 2018 Dec; 7(12):. PubMed ID: 30395218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of the generalization of learned image reconstruction and the potential for transfer learning.
    Knoll F; Hammernik K; Kobler E; Pock T; Recht MP; Sodickson DK
    Magn Reson Med; 2019 Jan; 81(1):116-128. PubMed ID: 29774597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.