These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 31898863)
1. Microscopic melanoma detection and classification: A framework of pixel-based fusion and multilevel features reduction. Rehman A; Khan MA; Mehmood Z; Saba T; Sardaraz M; Rashid M Microsc Res Tech; 2020 Apr; 83(4):410-423. PubMed ID: 31898863 [TBL] [Abstract][Full Text] [Related]
2. Efficient skin lesion segmentation using separable-Unet with stochastic weight averaging. Tang P; Liang Q; Yan X; Xiang S; Sun W; Zhang D; Coppola G Comput Methods Programs Biomed; 2019 Sep; 178():289-301. PubMed ID: 31416556 [TBL] [Abstract][Full Text] [Related]
3. Melanoma recognition in dermoscopy images using lesion's peripheral region information. Tajeddin NZ; Asl BM Comput Methods Programs Biomed; 2018 Sep; 163():143-153. PubMed ID: 30119849 [TBL] [Abstract][Full Text] [Related]
4. Construction of saliency map and hybrid set of features for efficient segmentation and classification of skin lesion. Khan MA; Akram T; Sharif M; Saba T; Javed K; Lali IU; Tanik UJ; Rehman A Microsc Res Tech; 2019 Jun; 82(6):741-763. PubMed ID: 30768826 [TBL] [Abstract][Full Text] [Related]
5. Deep Learning Based Skin Lesion Segmentation and Classification of Melanoma Using Support Vector Machine (SVM). R D S; A S Asian Pac J Cancer Prev; 2019 May; 20(5):1555-1561. PubMed ID: 31128062 [TBL] [Abstract][Full Text] [Related]
6. Region Extraction and Classification of Skin Cancer: A Heterogeneous framework of Deep CNN Features Fusion and Reduction. Saba T; Khan MA; Rehman A; Marie-Sainte SL J Med Syst; 2019 Jul; 43(9):289. PubMed ID: 31327058 [TBL] [Abstract][Full Text] [Related]
7. Skin lesion segmentation in dermoscopy images via deep full resolution convolutional networks. Al-Masni MA; Al-Antari MA; Choi MT; Han SM; Kim TS Comput Methods Programs Biomed; 2018 Aug; 162():221-231. PubMed ID: 29903489 [TBL] [Abstract][Full Text] [Related]
8. Integration of morphological preprocessing and fractal based feature extraction with recursive feature elimination for skin lesion types classification. Chatterjee S; Dey D; Munshi S Comput Methods Programs Biomed; 2019 Sep; 178():201-218. PubMed ID: 31416550 [TBL] [Abstract][Full Text] [Related]
9. Novel Approaches for Diagnosing Melanoma Skin Lesions Through Supervised and Deep Learning Algorithms. Premaladha J; Ravichandran KS J Med Syst; 2016 Apr; 40(4):96. PubMed ID: 26872778 [TBL] [Abstract][Full Text] [Related]
10. A novel cumulative level difference mean based GLDM and modified ABCD features ranked using eigenvector centrality approach for four skin lesion types classification. Wahba MA; Ashour AS; Guo Y; Napoleon SA; Elnaby MMA Comput Methods Programs Biomed; 2018 Oct; 165():163-174. PubMed ID: 30337071 [TBL] [Abstract][Full Text] [Related]
11. Microscopic skin laceration segmentation and classification: A framework of statistical normal distribution and optimal feature selection. Afza F; Khan MA; Sharif M; Rehman A Microsc Res Tech; 2019 Sep; 82(9):1471-1488. PubMed ID: 31168871 [TBL] [Abstract][Full Text] [Related]
12. Multiclass skin lesion localization and classification using deep learning based features fusion and selection framework for smart healthcare. Maqsood S; Damaševičius R Neural Netw; 2023 Mar; 160():238-258. PubMed ID: 36701878 [TBL] [Abstract][Full Text] [Related]
13. Automatic segmentation and melanoma detection based on color and texture features in dermoscopic images. Oukil S; Kasmi R; Mokrani K; García-Zapirain B Skin Res Technol; 2022 Mar; 28(2):203-211. PubMed ID: 34779062 [TBL] [Abstract][Full Text] [Related]
14. Segmentation of skin lesions in dermoscopy images using fuzzy classification of pixels and histogram thresholding. Garcia-Arroyo JL; Garcia-Zapirain B Comput Methods Programs Biomed; 2019 Jan; 168():11-19. PubMed ID: 30527129 [TBL] [Abstract][Full Text] [Related]
15. Skin lesion classification with ensembles of deep convolutional neural networks. Harangi B J Biomed Inform; 2018 Oct; 86():25-32. PubMed ID: 30103029 [TBL] [Abstract][Full Text] [Related]
16. Melanoma lesion detection and segmentation using deep region based convolutional neural network and fuzzy C-means clustering. Nida N; Irtaza A; Javed A; Yousaf MH; Mahmood MT Int J Med Inform; 2019 Apr; 124():37-48. PubMed ID: 30784425 [TBL] [Abstract][Full Text] [Related]
17. Extraction of skin lesion texture features based on independent component analysis. Tabatabaie K; Esteki A; Toossi P Skin Res Technol; 2009 Nov; 15(4):433-9. PubMed ID: 19832954 [TBL] [Abstract][Full Text] [Related]
18. An integrated and interactive decision support system for automated melanoma recognition of dermoscopic images. Rahman MM; Bhattacharya P Comput Med Imaging Graph; 2010 Sep; 34(6):479-86. PubMed ID: 19942406 [TBL] [Abstract][Full Text] [Related]
19. Melanoma Skin Cancer Detection based on Image Processing. Zghal NS; Derbel N Curr Med Imaging Rev; 2020; 16(1):50-58. PubMed ID: 31989893 [TBL] [Abstract][Full Text] [Related]
20. A perceptually oriented method for contrast enhancement and segmentation of dermoscopy images. Abbas Q; Garcia IF; Emre Celebi M; Ahmad W; Mushtaq Q Skin Res Technol; 2013 Feb; 19(1):e490-7. PubMed ID: 22882675 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]