These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 31898907)

  • 1. Ultrastable Lubricating Properties of Robust Self-Repairing Tribofilms Enabled by in Situ-Assembled Polydopamine Nanoparticles.
    Chen G; Zhao J; Chen K; Liu S; Zhang M; He Y; Luo J
    Langmuir; 2020 Feb; 36(4):852-861. PubMed ID: 31898907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Palladium Nanoparticle-Enabled Ultrathick Tribofilm with Unique Composition.
    Kumara C; Leonard DN; Meyer HM; Luo H; Armstrong BL; Qu J
    ACS Appl Mater Interfaces; 2018 Sep; 10(37):31804-31812. PubMed ID: 30141901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust Interfacial Tribofilms by Borate- and Polymer-Coated ZnO Nanoparticles Leading to Improved Wear Protection under a Boundary Lubrication Regime.
    Vyavhare K; Timmons RB; Erdemir A; Edwards BL; Aswath PB
    Langmuir; 2021 Feb; 37(5):1743-1759. PubMed ID: 33502870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tribological properties of attapulgite/La
    Nan F; Zhou K; Liu S; Pu J; Fang Y; Ding W
    RSC Adv; 2018 May; 8(30):16947-16956. PubMed ID: 35540511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of Tribofilm Formation in Boundary Lubrication Investigated Using In Situ Measurements of the Friction Force and Contact Voltage.
    Tsai AE; Komvopoulos K
    Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atom Probe Tomography Unveils Formation Mechanisms of Wear-Protective Tribofilms by ZDDP, Ionic Liquid, and Their Combination.
    Guo W; Zhou Y; Sang X; Leonard DN; Qu J; Poplawsky JD
    ACS Appl Mater Interfaces; 2017 Jul; 9(27):23152-23163. PubMed ID: 28632986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nano Serpentine Powders as Lubricant Additive: Tribological Behaviors and Self-Repairing Performance on Worn Surface.
    Wang B; Zhong Z; Qiu H; Chen D; Li W; Li S; Tu X
    Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32397564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding the Friction Reduction Mechanism Based on Molybdenum Disulfide Tribofilm Formation and Removal.
    Xu D; Wang C; Espejo C; Wang J; Neville A; Morina A
    Langmuir; 2018 Nov; 34(45):13523-13533. PubMed ID: 30347974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correction to "Ultrastable Lubricating Properties of Robust Self-Repairing Tribofilms Enabled by in Situ-Assembled Polydopamine Nanoparticles".
    Chen G; Zhao J; Chen K; Liu S; Zhang M; He Y; Luo J
    Langmuir; 2021 Feb; 37(6):2236. PubMed ID: 33543939
    [No Abstract]   [Full Text] [Related]  

  • 10. Effect of the Polar Head Type on the Surface Adsorption and Tribofilm Formation of Organic Friction Modifiers in Water-Based Lubricants.
    Marmorat T; Wijanarko W; Espallargas N; Khanmohammadi H
    Langmuir; 2024 Apr; 40(15):7920-7932. PubMed ID: 38571481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multilayer Tribofilm: An Unique Structure to Strengthen Interface Tribological Behaviors.
    Wen P; Lei Y; Yan Q; Han Y; Fan M
    ACS Appl Mater Interfaces; 2021 Mar; 13(9):11524-11534. PubMed ID: 33635048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon-based tribofilms from lubricating oils.
    Erdemir A; Ramirez G; Eryilmaz OL; Narayanan B; Liao Y; Kamath G; Sankaranarayanan SK
    Nature; 2016 Aug; 536(7614):67-71. PubMed ID: 27488799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using Green, Economical, Efficient Two-Dimensional (2D) Talc Nanosheets as Lubricant Additives under Harsh Conditions.
    Zhao J; Gao T; Dang J; Cao W; Wang Z; Li S; Shi Y
    Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On Lubrication States after a Running-In Process in Aqueous Lubrication.
    Jia W; Bai P; Zhang W; Ma L; Meng Y; Tian Y
    Langmuir; 2019 Dec; 35(48):15435-15443. PubMed ID: 31125241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the Tribochemical Impact on Wear Rate Dynamics of Hydrogenated Amorphous Carbon via Raman-Based Profilometry.
    Xu N; Wang C; Yang L; Jose G; Morina A
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):2071-2081. PubMed ID: 34968025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultralow Boundary Lubrication Friction by Three-Way Synergistic Interactions among Ionic Liquid, Friction Modifier, and Dispersant.
    Li W; Kumara C; Luo H; Meyer HM; He X; Ngo D; Kim SH; Qu J
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):17077-17090. PubMed ID: 32189490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation and Nature of Carbon-Containing Tribofilms.
    Wu H; Khan AM; Johnson B; Sasikumar K; Chung YW; Wang QJ
    ACS Appl Mater Interfaces; 2019 May; 11(17):16139-16146. PubMed ID: 30951286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding Tribofilm Formation Mechanisms in Ionic Liquid Lubrication.
    Zhou Y; Leonard DN; Guo W; Qu J
    Sci Rep; 2017 Aug; 7(1):8426. PubMed ID: 28814747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tribological Performance of Nanocomposite Carbon Lubricant Additive.
    Xue C; Wang S; Wen D; Wang G; Wang Y
    Materials (Basel); 2019 Jan; 12(1):. PubMed ID: 30621223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study on the Sliding Tribological Behavior of Oleic Acid-Modified MoS
    Guo L; Pan L; Li Z
    Langmuir; 2023 Oct; 39(41):14562-14572. PubMed ID: 37807858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.