These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 31898962)

  • 1. Contralateral occlusion test: The effect of external ear canal occlusion on predicting conductive hearing loss.
    Roque Reis L; Castelhano L; Correia F; Escada P
    Acta Otorrinolaringol Esp (Engl Ed); 2020; 71(4):235-241. PubMed ID: 31898962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contralateral Occlusion Test: The effect of external ear canal occlusion on hearing thresholds.
    Reis LR; Fernandes P; Escada P
    Acta Otorrinolaringol Esp (Engl Ed); 2017; 68(4):197-203. PubMed ID: 28193471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contralateral Occlusion Test (COT): the effect of external ear canal occlusion with aging.
    Reis LR; Castelhano L; Correia F; Escada P
    Codas; 2019; 31(3):e20180058. PubMed ID: 31017175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of conductive hearing loss using air conduction tests alone: reliability and validity of an automatic test battery.
    Convery E; Keidser G; Seeto M; Freeston K; Zhou D; Dillon H
    Ear Hear; 2014; 35(1):e1-8. PubMed ID: 24080948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accuracy of the Weber and Rinne tuning fork tests in evaluation of children with otitis media with effusion.
    Behn A; Westerberg BD; Zhang H; Riding KH; Ludemann JP; Kozak FK
    J Otolaryngol; 2007 Aug; 36(4):197-202. PubMed ID: 17942032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic Prediction of Conductive Hearing Loss Using Video Pneumatic Otoscopy and Deep Learning Algorithm.
    Byun H; Park CJ; Oh SJ; Chung MJ; Cho BH; Cho YS
    Ear Hear; 2022 Sep-Oct 01; 43(5):1563-1573. PubMed ID: 35344974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patterns of hearing loss in tympanic membrane perforation resulting from physical blow to the ear: a prospective controlled cohort study.
    Orji FT; Agu CC
    Clin Otolaryngol; 2009 Dec; 34(6):526-32. PubMed ID: 20070761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The importance of tuning forks].
    Reiss M; Reiss G
    Praxis (Bern 1994); 2002 Jan; 91(1-2):17-9. PubMed ID: 11824141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined tuning fork tests in hearing loss: explorative clinical study of the patterns.
    Vikram KB; Naseeruddin K
    J Otolaryngol; 2004 Aug; 33(4):227-34. PubMed ID: 15903203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validity of the Hum Test, a Simple and Reliable Alternative to the Weber Test.
    Ahmed OH; Gallant SC; Ruiz R; Wang B; Shapiro WH; Voigt EP
    Ann Otol Rhinol Laryngol; 2018 Jun; 127(6):402-405. PubMed ID: 29776326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Bing test in the detection of conductive hearing impairment.
    Swan IR; Browning GG
    Clin Otolaryngol Allied Sci; 1989 Dec; 14(6):539-43. PubMed ID: 2692884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pure-tone audiometry without bone-conduction thresholds: using the digits-in-noise test to detect conductive hearing loss.
    De Sousa KC; Smits C; Moore DR; Myburgh HC; Swanepoel W
    Int J Audiol; 2020 Oct; 59(10):801-808. PubMed ID: 32609044
    [No Abstract]   [Full Text] [Related]  

  • 13. Audiological evaluation and self-assessed hearing problems in subjects with single-sided congenital external ear malformations and associated conductive hearing loss.
    Priwin C; Jönsson R; Magnusson L; Hultcrantz M; Granström G
    Int J Audiol; 2007 Apr; 46(4):162-71. PubMed ID: 17454228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Rinne test for conductive deafness. A critical reappraisal.
    Chole RA; Cook GB
    Arch Otolaryngol Head Neck Surg; 1988 Apr; 114(4):399-403. PubMed ID: 3348896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of conductive hearing loss based on acoustic ear-canal response using a multivariate clinical decision theory.
    Piskorski P; Keefe DH; Simmons JL; Gorga MP
    J Acoust Soc Am; 1999 Mar; 105(3):1749-64. PubMed ID: 10089599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dehiscence of bone overlying the superior canal as a cause of apparent conductive hearing loss.
    Minor LB; Carey JP; Cremer PD; Lustig LR; Streubel SO; Ruckenstein MJ
    Otol Neurotol; 2003 Mar; 24(2):270-8. PubMed ID: 12621343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-Term Hearing Results After Ossiculoplasty.
    Cox MD; Trinidade A; Russell JS; Dornhoffer JL
    Otol Neurotol; 2017 Apr; 38(4):510-515. PubMed ID: 28106625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of Minor Conductive Hearing Loss in Humans Using Distortion Product Otoacoustic Emissions.
    Marcrum SC; Kummer P; Steffens T
    Ear Hear; 2017; 38(4):391-398. PubMed ID: 28169838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dehiscence of bone overlying the superior semicircular canal as a cause of an air-bone gap on audiometry: a case study.
    Cox KM; Lee DJ; Carey JP; Minor LB
    Am J Audiol; 2003 Jun; 12(1):11-6. PubMed ID: 12894862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical utility of the 512-Hz Rinne tuning fork test.
    Burkey JM; Lippy WH; Schuring AG; Rizer FM
    Am J Otol; 1998 Jan; 19(1):59-62. PubMed ID: 9455950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.