These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 31898976)

  • 1. Protective arm movements are modulated with fall height.
    Borrelli J; Creath R; Rogers MW
    J Biomech; 2020 Jan; 99():109569. PubMed ID: 31898976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The timing and amplitude of the muscular activity of the arms preceding impact in a forward fall is modulated with fall velocity.
    Borrelli J; Creath R; Rogers MW
    J Biomech; 2023 Mar; 150():111515. PubMed ID: 36867953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age-related changes in protective arm reaction kinematics, kinetics, and neuromuscular activation during evoked forward falls.
    Borrelli J; Creath R; Westlake K; Rogers MW
    Hum Mov Sci; 2022 Feb; 81():102914. PubMed ID: 34923206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fall arrest strategy affects peak hand impact force in a forward fall.
    DeGoede KM; Ashton-Miller JA
    J Biomech; 2002 Jun; 35(6):843-8. PubMed ID: 12021005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinematics, kinetics and muscle activation patterns of the upper extremity during simulated forward falls.
    Burkhart TA; Andrews DM
    J Electromyogr Kinesiol; 2013 Jun; 23(3):688-95. PubMed ID: 23461834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EMG responses to load perturbations of the upper limb: effect of dynamic coupling between shoulder and elbow motion.
    Lacquaniti F; Soechting JF
    Exp Brain Res; 1986; 61(3):482-96. PubMed ID: 3956610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of elbow flexion on upper extremity impact forces during a fall.
    Chou PH; Chou YL; Lin CJ; Su FC; Lou SZ; Lin CF; Huang GF
    Clin Biomech (Bristol, Avon); 2001 Dec; 16(10):888-94. PubMed ID: 11733126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Programmed electromyographic activity and negative incremental muscle stiffness in monkeys jumping downward.
    Dyhre-Poulsen P; Laursen AM
    J Physiol; 1984 May; 350():121-36. PubMed ID: 6747847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elbow joint angle and elbow movement velocity estimation using NARX-multiple layer perceptron neural network model with surface EMG time domain parameters.
    Raj R; Sivanandan KS
    J Back Musculoskelet Rehabil; 2017; 30(3):515-525. PubMed ID: 27858692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of gender, level of co-contraction, and initial angle on elbow extensor muscle stiffness and damping under a step increase in elbow flexion moment.
    Lee Y; Ashton-Miller JA
    Ann Biomed Eng; 2011 Oct; 39(10):2542-9. PubMed ID: 21484509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical factors affecting the peak hand reaction force during the bimanual arrest of a moving mass.
    DeGoede KM; Ashton-Miller JA; Schultz AB; Alexander NB
    J Biomech Eng; 2002 Feb; 124(1):107-12. PubMed ID: 11871596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical and physiological age differences in a simulated forward fall on outstretched hands in women.
    Lattimer LJ; Lanovaz JL; Farthing JP; Madill S; Kim SY; Robinovitch S; Arnold CM
    Clin Biomech (Bristol, Avon); 2018 Feb; 52():102-108. PubMed ID: 29407858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Age-related changes in the capacity to select early-onset upper-limb reactions to either recover balance or protect against impact.
    Borrelli JR; Zabukovec J; Jones S; Junod CA; Maki BE
    Exp Gerontol; 2019 Oct; 125():110676. PubMed ID: 31377381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hip impact velocities and body configurations for voluntary falls from standing height.
    van den Kroonenberg AJ; Hayes WC; McMahon TA
    J Biomech; 1996 Jun; 29(6):807-11. PubMed ID: 9147979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Directional tuning effects during cyclical two-joint arm movements in the horizontal plane.
    Levin O; Ouamer M; Steyvers M; Swinnen SP
    Exp Brain Res; 2001 Dec; 141(4):471-84. PubMed ID: 11810141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effectiveness of stretch-shortening cycling in upper-limb extensor muscles during elite cross-country skiing with the double-poling technique.
    Zoppirolli C; Holmberg HC; Pellegrini B; Quaglia D; Bortolan L; Schena F
    J Electromyogr Kinesiol; 2013 Dec; 23(6):1512-9. PubMed ID: 24064180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electromyographic responses to a mechanical perturbation applied during impending arm movements in different directions: one-joint and two-joint conditions.
    Koshland GF; Hasan Z
    Exp Brain Res; 2000 Jun; 132(4):485-99. PubMed ID: 10912829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age-dependent variations in the directional sensitivity of balance corrections and compensatory arm movements in man.
    Allum JH; Carpenter MG; Honegger F; Adkin AL; Bloem BR
    J Physiol; 2002 Jul; 542(Pt 2):643-63. PubMed ID: 12122159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuromuscular control mechanisms and strategy in arm movements of attempted supranormal speed.
    Ives JC; Abraham L; Kroll W
    Res Q Exerc Sport; 1999 Dec; 70(4):335-48. PubMed ID: 10797892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EMG and MMG of agonist and antagonist muscles as a function of age and joint angle.
    Jaskólska A; Katarzyna Kisiel-Sajewicz ; Brzenczek-Owczarzak W; Yue GH; Jaskólski A
    J Electromyogr Kinesiol; 2006 Feb; 16(1):89-102. PubMed ID: 16099173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.