These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

467 related articles for article (PubMed ID: 31899353)

  • 21. Reduced Cortical Activity Impairs Development and Plasticity after Neonatal Hypoxia Ischemia.
    Ranasinghe S; Or G; Wang EY; Ievins A; McLean MA; Niell CM; Chau V; Wong PK; Glass HC; Sullivan J; McQuillen PS
    J Neurosci; 2015 Aug; 35(34):11946-59. PubMed ID: 26311776
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carotid body chemoreception: mechanisms and dynamic protection against apnea.
    Lahiri S
    Biol Neonate; 1994; 65(3-4):134-9. PubMed ID: 7518700
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Developmental plasticity in the neural control of breathing.
    Bavis RW; MacFarlane PM
    Exp Neurol; 2017 Jan; 287(Pt 2):176-191. PubMed ID: 27246998
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Environmentally induced return to juvenile-like chemosensitivity in the respiratory control system of adult bullfrog, Lithobates catesbeianus.
    Santin JM; Hartzler LK
    J Physiol; 2016 Nov; 594(21):6349-6367. PubMed ID: 27444338
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The triple risk hypotheses in sudden infant death syndrome.
    Guntheroth WG; Spiers PS
    Pediatrics; 2002 Nov; 110(5):e64. PubMed ID: 12415070
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Long-term effects of the perinatal environment on respiratory control.
    Bavis RW; Mitchell GS
    J Appl Physiol (1985); 2008 Apr; 104(4):1220-9. PubMed ID: 18187608
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A comprehensive review of respiratory, autonomic and cardiovascular responses to intermittent hypoxia in humans.
    Puri S; Panza G; Mateika JH
    Exp Neurol; 2021 Jul; 341():113709. PubMed ID: 33781731
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Respiratory rhythm generation, hypoxia, and oxidative stress-Implications for development.
    Garcia AJ; Viemari JC; Khuu MA
    Respir Physiol Neurobiol; 2019 Dec; 270():103259. PubMed ID: 31369874
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The influence of chronic hypoxia upon chemoreception.
    Powell FL
    Respir Physiol Neurobiol; 2007 Jul; 157(1):154-61. PubMed ID: 17291837
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Carotid chemoafferent plasticity in adult rats following developmental hyperoxia.
    Bisgard GE; Olson EB; Bavis RW; Wenninger J; Nordheim EV; Mitchell GS
    Respir Physiol Neurobiol; 2005 Jan; 145(1):3-11. PubMed ID: 15652783
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Serotonin neurons and central respiratory chemoreception: where are we now?
    Teran FA; Massey CA; Richerson GB
    Prog Brain Res; 2014; 209():207-33. PubMed ID: 24746050
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Breathing: rhythmicity, plasticity, chemosensitivity.
    Feldman JL; Mitchell GS; Nattie EE
    Annu Rev Neurosci; 2003; 26():239-66. PubMed ID: 12598679
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Postnatal changes in O
    Dzal YA; Sprenger RJ; Milsom WK
    Respir Physiol Neurobiol; 2020 Jan; 272():103313. PubMed ID: 31626974
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Maternal Methadone Destabilizes Neonatal Breathing and Desensitizes Neonates to Opioid-Induced Respiratory Frequency Depression.
    Hocker AD; Morrison NR; Selby ML; Huxtable AG
    Front Physiol; 2021; 12():604593. PubMed ID: 33716765
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Developmental plasticity of the carotid chemoafferent pathway in rats that are hypoxic during the prenatal period.
    Peyronnet J; Roux JC; Mamet J; Perrin D; Lachuer J; Pequignot JM; Dalmaz Y
    Eur J Neurosci; 2007 Nov; 26(10):2865-72. PubMed ID: 18001283
    [TBL] [Abstract][Full Text] [Related]  

  • 36. IL-1 receptor activation undermines respiratory motor plasticity after systemic inflammation.
    Hocker AD; Huxtable AG
    J Appl Physiol (1985); 2018 Aug; 125(2):504-512. PubMed ID: 29565772
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ontogenesis of oxygen chemoreception in aquatic vertebrates.
    Jonz MG; Nurse CA
    Respir Physiol Neurobiol; 2006 Nov; 154(1-2):139-52. PubMed ID: 16488670
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of Astrocytes in Central Respiratory Chemoreception.
    Eugenín León J; Olivares MJ; Beltrán-Castillo S
    Adv Exp Med Biol; 2016; 949():109-145. PubMed ID: 27714687
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neuronal mechanisms of oxygen chemoreception: an invertebrate perspective.
    Janes TA; Syed NI
    Adv Exp Med Biol; 2012; 758():7-17. PubMed ID: 23080137
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.