BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 31899386)

  • 1. Biomimetic 3-Dimensional-Printed Posterior Cervical Laminectomy and Fusion Simulation: Advancements in Education Tools for Trainee Instruction.
    Clifton W; Damon A; Stein R; Pichelmann M; Nottmeier E
    World Neurosurg; 2020 Mar; 135():308. PubMed ID: 31899386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a Novel 3D Printed Phantom for Teaching Neurosurgical Trainees the Freehand Technique of C2 Laminar Screw Placement.
    Clifton W; Nottmeier E; Edwards S; Damon A; Dove C; Refaey K; Pichelmann M
    World Neurosurg; 2019 Sep; 129():e812-e820. PubMed ID: 31203082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The SpineBox: A Freely Available, Open-access, 3D-printed Simulator Design for Lumbar Pedicle Screw Placement.
    Clifton W; Damon A; Valero-Moreno F; Nottmeier E; Pichelmann M
    Cureus; 2020 Apr; 12(4):e7738. PubMed ID: 32455058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and Validation of a Cervical Laminectomy Simulator using 3D Printing and Hydrogel Phantoms.
    Weiss MY; Melnyk R; Mix D; Ghazi A; Vates GE; Stone JJ
    Oper Neurosurg (Hagerstown); 2020 Feb; 18(2):202-208. PubMed ID: 31157396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Creation of a novel simulator for minimally invasive neurosurgery: fusion of 3D printing and special effects.
    Weinstock P; Rehder R; Prabhu SP; Forbes PW; Roussin CJ; Cohen AR
    J Neurosurg Pediatr; 2017 Jul; 20(1):1-9. PubMed ID: 28438070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurosurgical training with a novel cervical spine simulator: posterior foraminotomy and laminectomy.
    Harrop J; Rezai AR; Hoh DJ; Ghobrial GM; Sharan A
    Neurosurgery; 2013 Oct; 73 Suppl 1():94-9. PubMed ID: 24051891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pediatric laryngeal simulator using 3D printed models: A novel technique.
    Kavanagh KR; Cote V; Tsui Y; Kudernatsch S; Peterson DR; Valdez TA
    Laryngoscope; 2017 Apr; 127(4):E132-E137. PubMed ID: 27730649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a Perfusion-Based Cadaveric Simulation Model Integrated into Neurosurgical Training: Feasibility Based On Reconstitution of Vascular and Cerebrospinal Fluid Systems.
    Zada G; Bakhsheshian J; Pham M; Minneti M; Christian E; Winer J; Robison A; Wrobel B; Russin J; Mack WJ; Giannotta S
    Oper Neurosurg (Hagerstown); 2018 Jan; 14(1):72-80. PubMed ID: 29117409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neurosurgical simulator for training aneurysm microsurgery-a user suitability study involving neurosurgeons and residents.
    Joseph FJ; Weber S; Raabe A; Bervini D
    Acta Neurochir (Wien); 2020 Oct; 162(10):2313-2321. PubMed ID: 32780255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of a three-dimensional printed dynamic cervical spine model for anatomy and physiology education.
    Clifton W; Damon A; Soares C; Nottmeier E; Pichelmann M
    Clin Anat; 2021 Jan; 34(1):30-39. PubMed ID: 32315475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. International Learner Perceptions, Educational Value, and Cost Associated With the Use of Start-to-Finish Surgical Simulation Compared With Cadaveric Models.
    Damon A; Lee SJ; Pichelmann M; Nottmeier E; CreveCoeur TS; Clifton W
    Oper Neurosurg (Hagerstown); 2023 Feb; 24(2):201-208. PubMed ID: 36637305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Review of 3-Dimensional Printing on Cranial Neurosurgery Simulation Training.
    Vakharia VN; Vakharia NN; Hill CS
    World Neurosurg; 2016 Apr; 88():188-198. PubMed ID: 26724615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developing an anterior cervical diskectomy and fusion simulator for neurosurgical resident training.
    Ray WZ; Ganju A; Harrop JS; Hoh DJ
    Neurosurgery; 2013 Oct; 73 Suppl 1():100-6. PubMed ID: 24051871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensionally printed vertebrae with different bone densities for surgical training.
    Burkhard M; Fürnstahl P; Farshad M
    Eur Spine J; 2019 Apr; 28(4):798-806. PubMed ID: 30511245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Feasibility Study for the Production of Three-dimensional-printed Spine Models Using Simultaneously Extruded Thermoplastic Polymers.
    Clifton W; Nottmeier E; Damon A; Dove C; Chen SG; Pichelmann M
    Cureus; 2019 Apr; 11(4):e4440. PubMed ID: 31205831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The importance of teaching clinical anatomy in surgical skills education: Spare the patient, use a sim!
    Clifton W; Damon A; Nottmeier E; Pichelmann M
    Clin Anat; 2020 Jan; 33(1):124-127. PubMed ID: 31581311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A microcontroller-based simulation of dural venous sinus injury for neurosurgical training.
    Cleary DR; Siler DA; Whitney N; Selden NR
    J Neurosurg; 2018 May; 128(5):1553-1559. PubMed ID: 28574314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Future of Biomechanical Spine Research: Conception and Design of a Dynamic 3D Printed Cervical Myelography Phantom.
    Clifton W; Nottmeier E; Damon A; Dove C; Pichelmann M
    Cureus; 2019 May; 11(5):e4591. PubMed ID: 31309016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reusable Low-Cost 3D Training Model for Aneurysm Clipping.
    Mery F; Aranda F; Méndez-Orellana C; Caro I; Pesenti J; Torres J; Rojas R; Villanueva P; Germano I
    World Neurosurg; 2021 Mar; 147():29-36. PubMed ID: 33276179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-Dimensional Printed Skull Base Simulation for Transnasal Endoscopic Surgical Training.
    Zheng JP; Li CZ; Chen GQ; Song GD; Zhang YZ
    World Neurosurg; 2018 Mar; 111():e773-e782. PubMed ID: 29309974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.