These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 31899640)

  • 1. Fabrication of New Belousov-Zhabotinsky Micro-Oscillators on the Basis of Silica Gel Beads.
    Mallphanov IL; Vanag VK
    J Phys Chem A; 2020 Jan; 124(2):272-282. PubMed ID: 31899640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distance dependent types of coupling of chemical micro-oscillators immersed in a water-in-oil microemulsion.
    Mallphanov IL; Vanag VK
    Phys Chem Chem Phys; 2021 Apr; 23(15):9130-9138. PubMed ID: 33885122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Traveling waves propagating through coupled microbeads in the Belousov-Zhabotinsky reaction.
    Kuze M; Kitahata H; Nakata S
    Phys Chem Chem Phys; 2021 Nov; 23(42):24175-24179. PubMed ID: 34673865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beating polymer gels coupled with a nonlinear chemical reaction.
    Yoshida R; Kokufuta E; Yamaguchi T
    Chaos; 1999 Jun; 9(2):260-266. PubMed ID: 12779823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel modes of synchronization in star networks of coupled chemical oscillators.
    Mersing D; Tyler SA; Ponboonjaroenchai B; Tinsley MR; Showalter K
    Chaos; 2021 Sep; 31(9):093127. PubMed ID: 34598462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of PDMS-Based Microfluidics on Belousov-Zhabotinsky Chemical Oscillators.
    Sheehy J; Hunter I; Moustaka ME; Aghvami SA; Fahmy Y; Fraden S
    J Phys Chem B; 2020 Dec; 124(51):11690-11698. PubMed ID: 33315410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Belousov-Zhabotinsky Reaction in Thermoresponsive Core-Shell Hydrogel Microspheres with a Tris(2,2'-bipyridyl)ruthenium Catalyst in the Core.
    Inui K; Watanabe T; Minato H; Matsui S; Ishikawa K; Yoshida R; Suzuki D
    J Phys Chem B; 2020 May; 124(18):3828-3835. PubMed ID: 32293889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Periodic reciprocating motion of a polymer gel on an aqueous phase synchronized with the Belousov-Zhabotinsky reaction.
    Nakata S; Yoshii M; Suzuki S; Yoshida R
    Langmuir; 2014 Jan; 30(2):517-21. PubMed ID: 24364697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microcalorimetric studies on chemical oscillation of microgels.
    Zhao F; Ding Y; Lu Y; Liu X; Zhang G
    J Phys Chem B; 2009 May; 113(19):6661-5. PubMed ID: 19378987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synchronicity in composite hydrogels: Belousov-Zhabotinsky (BZ) active nodes in gelatin.
    Buskohl PR; Kramb RC; Vaia RA
    J Phys Chem B; 2015 Feb; 119(8):3595-602. PubMed ID: 25642785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Terpyridine- and bipyridine-based ruthenium complexes as catalysts for the Belousov-Zhabotinsky reaction.
    Delgado J; Zhang Y; Xu B; Epstein IR
    J Phys Chem A; 2011 Mar; 115(11):2208-15. PubMed ID: 21361390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collective chemomechanical oscillations in active hydrogels.
    Blanc B; Agyapong JN; Hunter I; Galas JC; Fernandez-Nieves A; Fraden S
    Proc Natl Acad Sci U S A; 2024 Feb; 121(6):e2313258121. PubMed ID: 38300869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simple model for synchronization of two Belousov-Zhabotinsky gels interacting mechanically.
    Sukegawa T; Yamada Y; Maeda S
    J Chem Phys; 2024 Mar; 160(10):. PubMed ID: 38465685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined excitatory and inhibitory coupling in a 1-D array of Belousov-Zhabotinsky droplets.
    Li N; Delgado J; González-Ochoa HO; Epstein IR; Fraden S
    Phys Chem Chem Phys; 2014 Jun; 16(22):10965-78. PubMed ID: 24770658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aspects of the Belousov-Zhabotinsky Reaction inside a Self-Oscillating Polymer Brush.
    Masuda T; Akimoto AM; Furusawa M; Tamate R; Nagase K; Okano T; Yoshida R
    Langmuir; 2018 Jan; 34(4):1673-1680. PubMed ID: 29281793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loss of coherence in a population of diffusively coupled oscillators.
    Toth R; Taylor AF
    J Chem Phys; 2006 Dec; 125(22):224708. PubMed ID: 17176155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling chemical oscillations in heterogeneous Belousov-Zhabotinsky gels via mechanical strain.
    Yashin VV; Van Vliet KJ; Balazs AC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):046214. PubMed ID: 19518319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synchronization of Belousov-Zhabotinsky oscillators with electrochemical coupling in a spontaneous process.
    Liu Y; Pérez-Mercader J; Kiss IZ
    Chaos; 2022 Sep; 32(9):093128. PubMed ID: 36182363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of initial substrate concentration of the Belousov-Zhabotinsky reaction on self-oscillation for microgel system.
    Suzuki D; Yoshida R
    J Phys Chem B; 2008 Oct; 112(40):12618-24. PubMed ID: 18785705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-oscillating chemoelectrical interface of solution-gated ion-sensitive field-effect transistor based on Belousov-Zhabotinsky reaction.
    Sakata T; Nishitani S; Yasuoka Y; Himori S; Homma K; Masuda T; Akimoto AM; Sawada K; Yoshida R
    Sci Rep; 2022 Feb; 12(1):2949. PubMed ID: 35194095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.