These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 31899805)
1. PSK1 coordinates glucose metabolism and utilization and regulates energy-metabolism oscillation in Saccharomyces cerevisiae. Xu X; Huang M; Ouyang Y; Iha H; Xu Z Yeast; 2020 Mar; 37(3):261-268. PubMed ID: 31899805 [TBL] [Abstract][Full Text] [Related]
2. PSK1 regulates expression of SOD1 involved in oxidative stress tolerance in yeast. Huang M; Xu Q; Mitsui K; Xu Z FEMS Microbiol Lett; 2014 Jan; 350(2):154-60. PubMed ID: 24236444 [TBL] [Abstract][Full Text] [Related]
3. Role of Gts1p in regulation of energy-metabolism oscillation in continuous cultures of the yeast Saccharomyces cerevisiae. Xu Z; Tsurugi K Yeast; 2007 Mar; 24(3):161-70. PubMed ID: 17351907 [TBL] [Abstract][Full Text] [Related]
4. PSK2 coordinates glucose metabolism and utilization to maintain ultradian clock-coupled respiratory oscillation in Saccharomyces cerevisiae yeast. Ouyang Y; Xu Q; Mitsui K; Motizuki M; Xu Z Arch Biochem Biophys; 2011 May; 509(1):52-8. PubMed ID: 21345330 [TBL] [Abstract][Full Text] [Related]
5. Gts1p stabilizes oscillations in energy metabolism by activating the transcription of TPS1 encoding trehalose-6-phosphate synthase 1 in the yeast Saccharomyces cerevisiae. Xu Z; Yaguchi S; Tsurugi K Biochem J; 2004 Oct; 383(Pt 1):171-8. PubMed ID: 15228382 [TBL] [Abstract][Full Text] [Related]
6. Destabilization of energy-metabolism oscillation in the absence of trehalose synthesis in the chemostat culture of yeast. Xu Z; Tsurugi K Arch Biochem Biophys; 2007 Aug; 464(2):350-8. PubMed ID: 17531948 [TBL] [Abstract][Full Text] [Related]
7. Interaction of the GTS1 gene product with glyceraldehyde- 3-phosphate dehydrogenase 1 required for the maintenance of the metabolic oscillations of the yeast Saccharomyces cerevisiae. Liu W; Wang J; Mitsui K; Shen H; Tsurugi K Eur J Biochem; 2002 Jul; 269(14):3560-9. PubMed ID: 12135496 [TBL] [Abstract][Full Text] [Related]
8. The GTS1 gene product facilitates the self-organization of the energy metabolism oscillation in the continuous culture of the yeast Saccharomyces cerevisiae. Akiyama S; Tsurugi K FEMS Microbiol Lett; 2003 Nov; 228(1):105-10. PubMed ID: 14612244 [TBL] [Abstract][Full Text] [Related]
9. Identity of the growth-limiting nutrient strongly affects storage carbohydrate accumulation in anaerobic chemostat cultures of Saccharomyces cerevisiae. Hazelwood LA; Walsh MC; Luttik MA; Daran-Lapujade P; Pronk JT; Daran JM Appl Environ Microbiol; 2009 Nov; 75(21):6876-85. PubMed ID: 19734328 [TBL] [Abstract][Full Text] [Related]
10. The molecular basis of metabolic cycles and their relationship to circadian rhythms. Mellor J Nat Struct Mol Biol; 2016 Dec; 23(12):1035-1044. PubMed ID: 27922609 [TBL] [Abstract][Full Text] [Related]
11. A potential mechanism of energy-metabolism oscillation in an aerobic chemostat culture of the yeast Saccharomyces cerevisiae. Xu Z; Tsurugi K FEBS J; 2006 Apr; 273(8):1696-709. PubMed ID: 16623706 [TBL] [Abstract][Full Text] [Related]
12. Evidence for the involvement of the GTS1 gene product in the regulation of biological rhythms in the continuous culture of the yeast Saccharomyces cerevisiae. Wang J; Liu W; Mitsui K; Tsurugi K FEBS Lett; 2001 Jan; 489(1):81-6. PubMed ID: 11231018 [TBL] [Abstract][Full Text] [Related]
13. Dynamical remodeling of the transcriptome during short-term anaerobiosis in Saccharomyces cerevisiae: differential response and role of Msn2 and/or Msn4 and other factors in galactose and glucose media. Lai LC; Kosorukoff AL; Burke PV; Kwast KE Mol Cell Biol; 2005 May; 25(10):4075-91. PubMed ID: 15870279 [TBL] [Abstract][Full Text] [Related]
15. Ultradian rhythm of trehalose levels coupled to heat resistance in continuous cultures of the yeast Saccharomyces cerevisiae. Uno T; Wang J; Mitsui K; Umetani K; Tamura K; Tsurugi K Chronobiol Int; 2002 Mar; 19(2):361-75. PubMed ID: 12025930 [TBL] [Abstract][Full Text] [Related]
16. Central carbon metabolism of Saccharomyces cerevisiae in anaerobic, oxygen-limited and fully aerobic steady-state conditions and following a shift to anaerobic conditions. Wiebe MG; Rintala E; Tamminen A; Simolin H; Salusjärvi L; Toivari M; Kokkonen JT; Kiuru J; Ketola RA; Jouhten P; Huuskonen A; Maaheimo H; Ruohonen L; Penttilä M FEMS Yeast Res; 2008 Feb; 8(1):140-54. PubMed ID: 17425669 [TBL] [Abstract][Full Text] [Related]
17. Improved Xylose Metabolism by a Nijland JG; Shin HY; Boender LGM; de Waal PP; Klaassen P; Driessen AJM Appl Environ Microbiol; 2017 Jun; 83(11):. PubMed ID: 28363963 [TBL] [Abstract][Full Text] [Related]
18. Yeast PAS kinase coordinates glucose partitioning in response to metabolic and cell integrity signaling. Grose JH; Smith TL; Sabic H; Rutter J EMBO J; 2007 Nov; 26(23):4824-30. PubMed ID: 17989693 [TBL] [Abstract][Full Text] [Related]
19. Prolonged selection in aerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae causes a partial loss of glycolytic capacity. Jansen MLA; Diderich JA; Mashego M; Hassane A; de Winde JH; Daran-Lapujade P; Pronk JT Microbiology (Reading); 2005 May; 151(Pt 5):1657-1669. PubMed ID: 15870473 [TBL] [Abstract][Full Text] [Related]
20. Steady-state and transient-state analysis of growth and metabolite production in a Saccharomyces cerevisiae strain with reduced pyruvate-decarboxylase activity. Flikweert MT; Kuyper M; van Maris AJ; Kötter P; van Dijken JP; Pronk JT Biotechnol Bioeng; 1999; 66(1):42-50. PubMed ID: 10556793 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]