These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 31899913)

  • 21. Direct deposition of size-tunable Au nanoparticles on silicon oxide nanowires.
    Kim JH; An HH; Kim HS; Kim YH; Yoon CS
    J Colloid Interface Sci; 2009 Sep; 337(1):289-93. PubMed ID: 19477456
    [TBL] [Abstract][Full Text] [Related]  

  • 22. ZnO nanowires hydrothermally grown on PET polymer substrates and their characteristics.
    Lee CY; Li SY; Lin P; Tseng TY
    J Nanosci Nanotechnol; 2005 Jul; 5(7):1088-94. PubMed ID: 16108432
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oxidation Mechanism of Si
    Bae JM; Jeong KS; Lee WJ; Baik M; Park J; Cho MH
    ACS Appl Mater Interfaces; 2017 Oct; 9(42):37411-37418. PubMed ID: 28984123
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of silver impurity on the structural, electrical, and optical properties of ZnO nanowires.
    Kim K; Debnath PC; Lee DH; Kim S; Lee SY
    Nanoscale Res Lett; 2011 Oct; 6(1):552. PubMed ID: 21985620
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nonlayered Two-Dimensional Defective Semiconductor γ-Ga
    Zhou N; Gan L; Yang R; Wang F; Li L; Chen Y; Li D; Zhai T
    ACS Nano; 2019 Jun; 13(6):6297-6307. PubMed ID: 31082203
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Triaxially uniform high-quality Al
    Sarkar R; Ghosh K; Bhunia S; Nag D; Khiangte KR; Laha A
    Nanotechnology; 2019 Feb; 30(6):065603. PubMed ID: 30530937
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rutile structured SnO2 nanowires synthesized with metal catalyst by thermal evaporation method.
    Nam SH; Boo JH
    J Nanosci Nanotechnol; 2012 Feb; 12(2):1559-62. PubMed ID: 22630000
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Controllable Vapor Growth of Large-Area Aligned CdS
    Shoaib M; Wang X; Zhang X; Zhang Q; Pan A
    Nanomicro Lett; 2018; 10(4):58. PubMed ID: 30393706
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis and structural-optical properties of Ga-doped ZnO nanowires by hot-walled pulsed laser deposition method.
    Kim K; Lee DY; Park DH; Kim S; Lee SY
    J Nanosci Nanotechnol; 2012 May; 12(5):4173-6. PubMed ID: 22852366
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced photoluminescence and field-emission behavior of vertically well aligned arrays of In-doped ZnO Nanowires.
    Ahmad M; Sun H; Zhu J
    ACS Appl Mater Interfaces; 2011 Apr; 3(4):1299-305. PubMed ID: 21410190
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrochemical Growth of Very Long (∼80 μm) Crystalline Li
    Tomita K; Noguchi H; Uosaki K
    J Am Chem Soc; 2020 Nov; 142(46):19502-19509. PubMed ID: 33080134
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Graphene-assisted controlled growth of highly aligned ZnO nanorods and nanoribbons: growth mechanism and photoluminescence properties.
    Biroju RK; Giri PK; Dhara S; Imakita K; Fujii M
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):377-87. PubMed ID: 24367888
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Epitaxy of Ge nanowires grown from biotemplated Au nanoparticle catalysts.
    Sierra-Sastre Y; Dayeh SA; Picraux ST; Batt CA
    ACS Nano; 2010 Feb; 4(2):1209-17. PubMed ID: 20128609
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Vapor-liquid-solid growth of one-dimensional tin sulfide (SnS) nanostructures with promising field emission behavior.
    Suryawanshi SR; Warule SS; Patil SS; Patil KR; More MA
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):2018-25. PubMed ID: 24432697
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photoluminescence and Raman scattering from catalytically grown Zn(x)Cd(1-x)Se alloy nanowires.
    Venugopal R; Lin PI; Chen YT
    J Phys Chem B; 2006 Jun; 110(24):11691-6. PubMed ID: 16800464
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Controlling the growth of single crystal ZnO nanowires by tuning the atomic layer deposition parameters of the ZnO seed layer.
    Galan-Gonzalez A; Gallant A; Zeze DA; Atkinson D
    Nanotechnology; 2019 Jul; 30(30):305602. PubMed ID: 30974422
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Low-Temperature Solution Synthesis of Au-Modified ZnO Nanowires for Highly Efficient Hydrogen Nanosensors.
    Lupan O; Postica V; Wolff N; Su J; Labat F; Ciofini I; Cavers H; Adelung R; Polonskyi O; Faupel F; Kienle L; Viana B; Pauporté T
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):32115-32126. PubMed ID: 31385698
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterizing defects and transport in Si nanowire devices using Kelvin probe force microscopy.
    Bae SS; Prokopuk N; Quitoriano NJ; Adams SM; Ragan R
    Nanotechnology; 2012 Oct; 23(40):405706. PubMed ID: 22995919
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Solution growth of 1D zinc tungstate (ZnWO
    Shad NA; Bajwa SZ; Amin N; Taj A; Hameed S; Khan Y; Dai Z; Cao C; Khan WS
    J Hazard Mater; 2019 Apr; 367():205-214. PubMed ID: 30594721
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Complementary Metal Oxide Semiconductor-Compatible, High-Mobility, ⟨111⟩-Oriented GaSb Nanowires Enabled by Vapor-Solid-Solid Chemical Vapor Deposition.
    Yang ZX; Liu L; Yip S; Li D; Shen L; Zhou Z; Han N; Hung TF; Pun EY; Wu X; Song A; Ho JC
    ACS Nano; 2017 Apr; 11(4):4237-4246. PubMed ID: 28355076
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.