These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
263 related articles for article (PubMed ID: 31900329)
1. Synthesis of low immunogenicity RNA with high-temperature in vitro transcription. Wu MZ; Asahara H; Tzertzinis G; Roy B RNA; 2020 Mar; 26(3):345-360. PubMed ID: 31900329 [TBL] [Abstract][Full Text] [Related]
2. Psychrophilic phage VSW-3 RNA polymerase reduces both terminal and full-length dsRNA byproducts in Xia H; Yu B; Jiang Y; Cheng R; Lu X; Wu H; Zhu B RNA Biol; 2022 Jan; 19(1):1130-1142. PubMed ID: 36299232 [TBL] [Abstract][Full Text] [Related]
3. DNA-terminus-dependent transcription by T7 RNA polymerase and its C-helix mutants. Yu B; Chen Y; Yan Y; Lu X; Zhu B Nucleic Acids Res; 2024 Aug; 52(14):8443-8453. PubMed ID: 38979568 [TBL] [Abstract][Full Text] [Related]
4. An origin of the immunogenicity of in vitro transcribed RNA. Mu X; Greenwald E; Ahmad S; Hur S Nucleic Acids Res; 2018 Jun; 46(10):5239-5249. PubMed ID: 29534222 [TBL] [Abstract][Full Text] [Related]
5. An engineered T7 RNA polymerase that produces mRNA free of immunostimulatory byproducts. Dousis A; Ravichandran K; Hobert EM; Moore MJ; Rabideau AE Nat Biotechnol; 2023 Apr; 41(4):560-568. PubMed ID: 36357718 [TBL] [Abstract][Full Text] [Related]
6. An engineered T7 RNA polymerase for efficient co-transcriptional capping with reduced dsRNA byproducts in mRNA synthesis. Miller M; Alvizo O; Baskerville S; Chintala A; Chng C; Dassie J; Dorigatti J; Huisman G; Jenne S; Kadam S; Leatherbury N; Lutz S; Mayo M; Mukherjee A; Sero A; Sundseth S; Penfield J; Riggins J; Zhang X Faraday Discuss; 2024 Sep; 252(0):431-449. PubMed ID: 38832894 [TBL] [Abstract][Full Text] [Related]
7. Effective Synthesis of mRNA during In Vitro Transcription with Fewer Impurities Produced. He W; Geng Q; Ji G; Li J; Wang D; He Y; Jin Q; Ye J Molecules; 2024 Oct; 29(19):. PubMed ID: 39407643 [TBL] [Abstract][Full Text] [Related]
11. Purification of linearized template plasmid DNA decreases double-stranded RNA formation during IVT reaction. Martínez J; Lampaya V; Larraga A; Magallón H; Casabona D Front Mol Biosci; 2023; 10():1248511. PubMed ID: 37842641 [TBL] [Abstract][Full Text] [Related]
12. Non-programmed transcriptional frameshifting is common and highly RNA polymerase type-dependent. Koscielniak D; Wons E; Wilkowska K; Sektas M Microb Cell Fact; 2018 Nov; 17(1):184. PubMed ID: 30474557 [TBL] [Abstract][Full Text] [Related]
13. High-salt transcription from enzymatically gapped promoters nets higher yields and purity of transcribed RNAs. MalagodaPathiranage K; Cavac E; Chen TH; Roy B; Martin CT Nucleic Acids Res; 2023 Apr; 51(6):e36. PubMed ID: 36718937 [TBL] [Abstract][Full Text] [Related]
14. RNA sensor response in HeLa cells for transfected mRNAs prepared Nagaraj S; Stankiewicz-Drogon A; Darzynkiewicz E; Grzela R Front Bioeng Biotechnol; 2022; 10():1017934. PubMed ID: 36406230 [No Abstract] [Full Text] [Related]
15. Effective Synthesis of High-Integrity mRNA Using In Vitro Transcription. He W; Zhang X; Zou Y; Li J; Wang C; He Y; Jin Q; Ye J Molecules; 2024 May; 29(11):. PubMed ID: 38893337 [TBL] [Abstract][Full Text] [Related]
16. Comprehensive evaluation of T7 promoter for enhanced yield and quality in mRNA production. Sari Y; Sousa Rosa S; Jeffries J; Marques MPC Sci Rep; 2024 Apr; 14(1):9655. PubMed ID: 38671016 [TBL] [Abstract][Full Text] [Related]
17. Effects of substitutions in a conserved DX(2)GR sequence motif, found in many DNA-dependent nucleotide polymerases, on transcription by T7 RNA polymerase. Imburgio D; Anikin M; McAllister WT J Mol Biol; 2002 May; 319(1):37-51. PubMed ID: 12051935 [TBL] [Abstract][Full Text] [Related]