BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

392 related articles for article (PubMed ID: 31900408)

  • 21. Graph neural networks for automated de novo drug design.
    Xiong J; Xiong Z; Chen K; Jiang H; Zheng M
    Drug Discov Today; 2021 Jun; 26(6):1382-1393. PubMed ID: 33609779
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Artificial intelligence in drug design.
    Zhong F; Xing J; Li X; Liu X; Fu Z; Xiong Z; Lu D; Wu X; Zhao J; Tan X; Li F; Luo X; Li Z; Chen K; Zheng M; Jiang H
    Sci China Life Sci; 2018 Oct; 61(10):1191-1204. PubMed ID: 30054833
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deep Reinforcement Learning for Multiparameter Optimization in
    Ståhl N; Falkman G; Karlsson A; Mathiason G; Boström J
    J Chem Inf Model; 2019 Jul; 59(7):3166-3176. PubMed ID: 31273995
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Generating and screening de novo compounds against given targets using ultrafast deep learning models as core components.
    Zhang H; Saravanan KM; Yang Y; Wei Y; Yi P; Zhang JZH
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35724626
    [TBL] [Abstract][Full Text] [Related]  

  • 25. De Novo Molecular Design with Chemical Language Models.
    Grisoni F; Schneider G
    Methods Mol Biol; 2022; 2390():207-232. PubMed ID: 34731471
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reaction-driven de novo design, synthesis and testing of potential type II kinase inhibitors.
    Schneider G; Geppert T; Hartenfeller M; Reisen F; Klenner A; Reutlinger M; Hähnke V; Hiss JA; Zettl H; Keppner S; Spänkuch B; Schneider P
    Future Med Chem; 2011 Mar; 3(4):415-24. PubMed ID: 21452978
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Artificial Intelligent Deep Learning Molecular Generative Modeling of Scaffold-Focused and Cannabinoid CB2 Target-Specific Small-Molecule Sublibraries.
    Bian Y; Xie XQ
    Cells; 2022 Mar; 11(5):. PubMed ID: 35269537
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Scaffold-Constrained Molecular Generation.
    Langevin M; Minoux H; Levesque M; Bianciotto M
    J Chem Inf Model; 2020 Dec; 60(12):5637-5646. PubMed ID: 33301333
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Scaffold-hopping potential of fragment-based de novo design: the chances and limits of variation.
    Krueger BA; Dietrich A; Baringhaus KH; Schneider G
    Comb Chem High Throughput Screen; 2009 May; 12(4):383-96. PubMed ID: 19442066
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Has Artificial Intelligence Impacted Drug Discovery?
    Patronov A; Papadopoulos K; Engkvist O
    Methods Mol Biol; 2022; 2390():153-176. PubMed ID: 34731468
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Shape-Based Generative Modeling for de Novo Drug Design.
    Skalic M; Jiménez J; Sabbadin D; De Fabritiis G
    J Chem Inf Model; 2019 Mar; 59(3):1205-1214. PubMed ID: 30762364
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure-Based
    Ma B; Terayama K; Matsumoto S; Isaka Y; Sasakura Y; Iwata H; Araki M; Okuno Y
    J Chem Inf Model; 2021 Jul; 61(7):3304-3313. PubMed ID: 34242036
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Artificial Intelligence in Drug Design.
    Hessler G; Baringhaus KH
    Molecules; 2018 Oct; 23(10):. PubMed ID: 30279331
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Training recurrent neural networks as generative neural networks for molecular structures: how does it impact drug discovery?
    D'Souza S; Kv P; Balaji S
    Expert Opin Drug Discov; 2022 Oct; 17(10):1071-1079. PubMed ID: 36216812
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computational approaches for fragment-based and de novo design.
    Loving K; Alberts I; Sherman W
    Curr Top Med Chem; 2010; 10(1):14-32. PubMed ID: 19929832
    [TBL] [Abstract][Full Text] [Related]  

  • 36. De novo molecular design with deep molecular generative models for PPI inhibitors.
    Wang J; Chu Y; Mao J; Jeon HN; Jin H; Zeb A; Jang Y; Cho KH; Song T; No KT
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35830870
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coloring Molecules with Explainable Artificial Intelligence for Preclinical Relevance Assessment.
    Jiménez-Luna J; Skalic M; Weskamp N; Schneider G
    J Chem Inf Model; 2021 Mar; 61(3):1083-1094. PubMed ID: 33629843
    [TBL] [Abstract][Full Text] [Related]  

  • 38. RECAP--retrosynthetic combinatorial analysis procedure: a powerful new technique for identifying privileged molecular fragments with useful applications in combinatorial chemistry.
    Lewell XQ; Judd DB; Watson SP; Hann MM
    J Chem Inf Comput Sci; 1998; 38(3):511-22. PubMed ID: 9611787
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deep learning for molecular generation.
    Xu Y; Lin K; Wang S; Wang L; Cai C; Song C; Lai L; Pei J
    Future Med Chem; 2019 Mar; 11(6):567-597. PubMed ID: 30698019
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PaccMann
    Born J; Manica M; Oskooei A; Cadow J; Markert G; Rodríguez Martínez M
    iScience; 2021 Apr; 24(4):102269. PubMed ID: 33851095
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.