These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 31900418)

  • 1. Interpreting pathways to discover cancer driver genes with Moonlight.
    Colaprico A; Olsen C; Bailey MH; Odom GJ; Terkelsen T; Silva TC; Olsen AV; Cantini L; Zinovyev A; Barillot E; Noushmehr H; Bertoli G; Castiglioni I; Cava C; Bontempi G; Chen XS; Papaleo E
    Nat Commun; 2020 Jan; 11(1):69. PubMed ID: 31900418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A workflow to study mechanistic indicators for driver gene prediction with Moonlight.
    Nourbakhsh M; Saksager A; Tom N; Chen XS; Colaprico A; Olsen C; Tiberti M; Papaleo E
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37551622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying cancer type specific oncogenes and tumor suppressors using limited size data.
    Pavel AB; Vasile CI
    J Bioinform Comput Biol; 2016 Dec; 14(6):1650031. PubMed ID: 27712196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SomInaClust: detection of cancer genes based on somatic mutation patterns of inactivation and clustering.
    Van den Eynden J; Fierro AC; Verbeke LP; Marchal K
    BMC Bioinformatics; 2015 Apr; 16():125. PubMed ID: 25903787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovering potential cancer driver genes by an integrated network-based approach.
    Shi K; Gao L; Wang B
    Mol Biosyst; 2016 Aug; 12(9):2921-31. PubMed ID: 27426053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. IDENTIFY CANCER DRIVER GENES THROUGH SHARED MENDELIAN DISEASE PATHOGENIC VARIANTS AND CANCER SOMATIC MUTATIONS.
    Ma M; Wang C; Glicksberg BS; Schadt EE; Li SD; Chen R
    Pac Symp Biocomput; 2017; 22():473-484. PubMed ID: 27896999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of druggable cancer driver genes amplified across TCGA datasets.
    Chen Y; McGee J; Chen X; Doman TN; Gong X; Zhang Y; Hamm N; Ma X; Higgs RE; Bhagwat SV; Buchanan S; Peng SB; Staschke KA; Yadav V; Yue Y; Kouros-Mehr H
    PLoS One; 2014; 9(5):e98293. PubMed ID: 24874471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LOTUS: A single- and multitask machine learning algorithm for the prediction of cancer driver genes.
    Collier O; Stoven V; Vert JP
    PLoS Comput Biol; 2019 Sep; 15(9):e1007381. PubMed ID: 31568528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine Learning Classification and Structure-Functional Analysis of Cancer Mutations Reveal Unique Dynamic and Network Signatures of Driver Sites in Oncogenes and Tumor Suppressor Genes.
    Agajanian S; Odeyemi O; Bischoff N; Ratra S; Verkhivker GM
    J Chem Inf Model; 2018 Oct; 58(10):2131-2150. PubMed ID: 30253099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Integrative Method Based on the Module-Network for Identifying Driver Genes in Cancer Subtypes.
    Lu X; Li X; Liu P; Qian X; Miao Q; Peng S
    Molecules; 2018 Jan; 23(2):. PubMed ID: 29364829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and analysis of mutational hotspots in oncogenes and tumour suppressors.
    Baeissa H; Benstead-Hume G; Richardson CJ; Pearl FMG
    Oncotarget; 2017 Mar; 8(13):21290-21304. PubMed ID: 28423505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated analysis of gene expression and copy number identified potential cancer driver genes with amplification-dependent overexpression in 1,454 solid tumors.
    Ohshima K; Hatakeyama K; Nagashima T; Watanabe Y; Kanto K; Doi Y; Ide T; Shimoda Y; Tanabe T; Ohnami S; Ohnami S; Serizawa M; Maruyama K; Akiyama Y; Urakami K; Kusuhara M; Mochizuki T; Yamaguchi K
    Sci Rep; 2017 Apr; 7(1):641. PubMed ID: 28377632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Somatic selection distinguishes oncogenes and tumor suppressor genes.
    Chandrashekar P; Ahmadinejad N; Wang J; Sekulic A; Egan JB; Asmann YW; Kumar S; Maley C; Liu L
    Bioinformatics; 2020 Mar; 36(6):1712-1717. PubMed ID: 32176769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Copy number losses of oncogenes and gains of tumor suppressor genes generate common driver mutations.
    Besedina E; Supek F
    Nat Commun; 2024 Jul; 15(1):6139. PubMed ID: 39033140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PhenoDriver: interpretable framework for studying personalized phenotype-associated driver genes in breast cancer.
    Li Y; Zhang SW; Xie MY; Zhang T
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37738403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DORGE: Discovery of Oncogenes and tumoR suppressor genes using Genetic and Epigenetic features.
    Lyu J; Li JJ; Su J; Peng F; Chen YE; Ge X; Li W
    Sci Adv; 2020 Nov; 6(46):. PubMed ID: 33177077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating mutation and gene expression cross-sectional data to infer cancer progression.
    Fleck JL; Pavel AB; Cassandras CG
    BMC Syst Biol; 2016 Jan; 10():12. PubMed ID: 26810975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrative modeling of multi-omics data to identify cancer drivers and infer patient-specific gene activity.
    Pavel AB; Sonkin D; Reddy A
    BMC Syst Biol; 2016 Feb; 10():16. PubMed ID: 26864072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating the evaluation of cancer driver genes.
    Tokheim CJ; Papadopoulos N; Kinzler KW; Vogelstein B; Karchin R
    Proc Natl Acad Sci U S A; 2016 Dec; 113(50):14330-14335. PubMed ID: 27911828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematic analysis of mutation distribution in three dimensional protein structures identifies cancer driver genes.
    Fujimoto A; Okada Y; Boroevich KA; Tsunoda T; Taniguchi H; Nakagawa H
    Sci Rep; 2016 May; 6():26483. PubMed ID: 27225414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.