BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 31900418)

  • 1. Interpreting pathways to discover cancer driver genes with Moonlight.
    Colaprico A; Olsen C; Bailey MH; Odom GJ; Terkelsen T; Silva TC; Olsen AV; Cantini L; Zinovyev A; Barillot E; Noushmehr H; Bertoli G; Castiglioni I; Cava C; Bontempi G; Chen XS; Papaleo E
    Nat Commun; 2020 Jan; 11(1):69. PubMed ID: 31900418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A workflow to study mechanistic indicators for driver gene prediction with Moonlight.
    Nourbakhsh M; Saksager A; Tom N; Chen XS; Colaprico A; Olsen C; Tiberti M; Papaleo E
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37551622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying cancer type specific oncogenes and tumor suppressors using limited size data.
    Pavel AB; Vasile CI
    J Bioinform Comput Biol; 2016 Dec; 14(6):1650031. PubMed ID: 27712196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SomInaClust: detection of cancer genes based on somatic mutation patterns of inactivation and clustering.
    Van den Eynden J; Fierro AC; Verbeke LP; Marchal K
    BMC Bioinformatics; 2015 Apr; 16():125. PubMed ID: 25903787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovering potential cancer driver genes by an integrated network-based approach.
    Shi K; Gao L; Wang B
    Mol Biosyst; 2016 Aug; 12(9):2921-31. PubMed ID: 27426053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. IDENTIFY CANCER DRIVER GENES THROUGH SHARED MENDELIAN DISEASE PATHOGENIC VARIANTS AND CANCER SOMATIC MUTATIONS.
    Ma M; Wang C; Glicksberg BS; Schadt EE; Li SD; Chen R
    Pac Symp Biocomput; 2017; 22():473-484. PubMed ID: 27896999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LOTUS: A single- and multitask machine learning algorithm for the prediction of cancer driver genes.
    Collier O; Stoven V; Vert JP
    PLoS Comput Biol; 2019 Sep; 15(9):e1007381. PubMed ID: 31568528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine Learning Classification and Structure-Functional Analysis of Cancer Mutations Reveal Unique Dynamic and Network Signatures of Driver Sites in Oncogenes and Tumor Suppressor Genes.
    Agajanian S; Odeyemi O; Bischoff N; Ratra S; Verkhivker GM
    J Chem Inf Model; 2018 Oct; 58(10):2131-2150. PubMed ID: 30253099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Integrative Method Based on the Module-Network for Identifying Driver Genes in Cancer Subtypes.
    Lu X; Li X; Liu P; Qian X; Miao Q; Peng S
    Molecules; 2018 Jan; 23(2):. PubMed ID: 29364829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated analysis of gene expression and copy number identified potential cancer driver genes with amplification-dependent overexpression in 1,454 solid tumors.
    Ohshima K; Hatakeyama K; Nagashima T; Watanabe Y; Kanto K; Doi Y; Ide T; Shimoda Y; Tanabe T; Ohnami S; Ohnami S; Serizawa M; Maruyama K; Akiyama Y; Urakami K; Kusuhara M; Mochizuki T; Yamaguchi K
    Sci Rep; 2017 Apr; 7(1):641. PubMed ID: 28377632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and analysis of mutational hotspots in oncogenes and tumour suppressors.
    Baeissa H; Benstead-Hume G; Richardson CJ; Pearl FMG
    Oncotarget; 2017 Mar; 8(13):21290-21304. PubMed ID: 28423505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating the evaluation of cancer driver genes.
    Tokheim CJ; Papadopoulos N; Kinzler KW; Vogelstein B; Karchin R
    Proc Natl Acad Sci U S A; 2016 Dec; 113(50):14330-14335. PubMed ID: 27911828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrating mutation and gene expression cross-sectional data to infer cancer progression.
    Fleck JL; Pavel AB; Cassandras CG
    BMC Syst Biol; 2016 Jan; 10():12. PubMed ID: 26810975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A pan-cancer analysis of driver gene mutations, DNA methylation and gene expressions reveals that chromatin remodeling is a major mechanism inducing global changes in cancer epigenomes.
    Youn A; Kim KI; Rabadan R; Tycko B; Shen Y; Wang S
    BMC Med Genomics; 2018 Nov; 11(1):98. PubMed ID: 30400878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrative modeling of multi-omics data to identify cancer drivers and infer patient-specific gene activity.
    Pavel AB; Sonkin D; Reddy A
    BMC Syst Biol; 2016 Feb; 10():16. PubMed ID: 26864072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An integrative study on the impact of highly differentially methylated genes on expression and cancer etiology.
    Ozer B; Sezerman U
    PLoS One; 2017; 12(2):e0171694. PubMed ID: 28178311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of candidate cancer drivers by integrative Epi-DNA and Gene Expression (iEDGE) data analysis.
    Li A; Chapuy B; Varelas X; Sebastiani P; Monti S
    Sci Rep; 2019 Nov; 9(1):16904. PubMed ID: 31729402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic changes of driver genes' mutations across clinical stages in nine cancer types.
    Li X
    Cancer Med; 2016 Jul; 5(7):1556-65. PubMed ID: 26992457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. QuaDMutNetEx: a method for detecting cancer driver genes with low mutation frequency.
    Bokhari Y; Alhareeri A; Arodz T
    BMC Bioinformatics; 2020 Mar; 21(1):122. PubMed ID: 32293263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Somatic selection distinguishes oncogenes and tumor suppressor genes.
    Chandrashekar P; Ahmadinejad N; Wang J; Sekulic A; Egan JB; Asmann YW; Kumar S; Maley C; Liu L
    Bioinformatics; 2020 Mar; 36(6):1712-1717. PubMed ID: 32176769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.