These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. A Review of RedOx Cycling of Solid Oxide Fuel Cells Anode. Faes A; Hessler-Wyser A; Zryd A; Van Herle J Membranes (Basel); 2012 Aug; 2(3):585-664. PubMed ID: 24958298 [TBL] [Abstract][Full Text] [Related]
23. Niobium Doped Lanthanum Strontium Ferrite as A Redox-Stable and Sulfur-Tolerant Anode for Solid Oxide Fuel Cells. Li J; Wei B; Cao Z; Yue X; Zhang Y; Lü Z ChemSusChem; 2018 Jan; 11(1):254-263. PubMed ID: 28976645 [TBL] [Abstract][Full Text] [Related]
24. Hierarchically oriented macroporous anode-supported solid oxide fuel cell with thin ceria electrolyte film. Chen Y; Zhang Y; Baker J; Majumdar P; Yang Z; Han M; Chen F ACS Appl Mater Interfaces; 2014 Apr; 6(7):5130-6. PubMed ID: 24621230 [TBL] [Abstract][Full Text] [Related]
25. Design of Active Sites on Nickel in the Anode of Intermediate-Temperature Solid Oxide Fuel Cells using Trace Amount of Platinum Oxides. Rednyk A; Mori T; Yamamoto S; Suzuki A; Yamamoto Y; Tanji T; Isaka N; Kúš P; Ito S; Ye F Chempluschem; 2018 Aug; 83(8):756-768. PubMed ID: 31950667 [TBL] [Abstract][Full Text] [Related]
26. A redox-stable efficient anode for solid-oxide fuel cells. Tao S; Irvine JT Nat Mater; 2003 May; 2(5):320-3. PubMed ID: 12692533 [TBL] [Abstract][Full Text] [Related]
27. Rational Design of Perovskite-Based Anode with Decent Activity for Hydrogen Electro-Oxidation and Beneficial Effect of Sulfur for Promoting Power Generation in Solid Oxide Fuel Cells. Song Y; Wang W; Qu J; Zhong Y; Yang G; Zhou W; Shao Z ACS Appl Mater Interfaces; 2018 Dec; 10(48):41257-41267. PubMed ID: 30383360 [TBL] [Abstract][Full Text] [Related]
28. Triple-phase boundary and power density enhancement in thin solid oxide fuel cells by controlled etching of the nickel anode. Ebrahim R; Yeleuov M; Issova A; Tokmoldin S; Ignatiev A Nanoscale Res Lett; 2014; 9(1):286. PubMed ID: 24982602 [TBL] [Abstract][Full Text] [Related]
29. Three-dimensional analysis of solid oxide fuel cell Ni-YSZ anode interconnectivity. Wilson JR; Gameiro M; Mischaikow K; Kalies W; Voorhees PW; Barnett SA Microsc Microanal; 2009 Feb; 15(1):71-7. PubMed ID: 19144260 [TBL] [Abstract][Full Text] [Related]
30. Vanadium-Doped Strontium Molybdate with Exsolved Ni Nanoparticles as Anode Material for Solid Oxide Fuel Cells. Wan Y; Xing Y; Xie Y; Shi N; Xu J; Xia C ACS Appl Mater Interfaces; 2019 Nov; 11(45):42271-42279. PubMed ID: 31647214 [TBL] [Abstract][Full Text] [Related]
31. Discovery and characterization of novel oxide anodes for solid oxide fuel cells. Tao S; Irvine JT Chem Rec; 2004; 4(2):83-95. PubMed ID: 15073876 [TBL] [Abstract][Full Text] [Related]
32. 3D Microstructure Effects in Ni-YSZ Anodes: Prediction of Effective Transport Properties and Optimization of Redox Stability. Pecho OM; Stenzel O; Iwanschitz B; Gasser P; Neumann M; Schmidt V; Prestat M; Hocker T; Flatt RJ; Holzer L Materials (Basel); 2015 Aug; 8(9):5554-5585. PubMed ID: 28793523 [TBL] [Abstract][Full Text] [Related]
33. In situ fabrication of high-performance Ni-GDC-nanocube core-shell anode for low-temperature solid-oxide fuel cells. Yamamoto K; Qiu N; Ohara S Sci Rep; 2015 Nov; 5():17433. PubMed ID: 26615816 [TBL] [Abstract][Full Text] [Related]
34. Nanostructured Double Perovskite Cathode With Low Sintering Temperature For Intermediate Temperature Solid Oxide Fuel Cells. Kim S; Jun A; Kwon O; Kim J; Yoo S; Jeong HY; Shin J; Kim G ChemSusChem; 2015 Sep; 8(18):3153-8. PubMed ID: 26227300 [TBL] [Abstract][Full Text] [Related]
35. Anisotropic elastic properties of human femoral cortical bone and relationships with composition and microstructure in elderly. Cai X; Follet H; Peralta L; Gardegaront M; Farlay D; Gauthier R; Yu B; Gineyts E; Olivier C; Langer M; Gourrier A; Mitton D; Peyrin F; Grimal Q; Laugier P Acta Biomater; 2019 May; 90():254-266. PubMed ID: 30922952 [TBL] [Abstract][Full Text] [Related]
36. Novel Mg-Doped SrMoO₃ Perovskites Designed as Anode Materials for Solid Oxide Fuel Cells. Cascos V; Alonso JA; Fernández-Díaz MT Materials (Basel); 2016 Jul; 9(7):. PubMed ID: 28773708 [TBL] [Abstract][Full Text] [Related]
37. 3D Microstructure Effects in Ni-YSZ Anodes: Influence of TPB Lengths on the Electrochemical Performance. Pecho OM; Mai A; Münch B; Hocker T; Flatt RJ; Holzer L Materials (Basel); 2015 Oct; 8(10):7129-7144. PubMed ID: 28793624 [TBL] [Abstract][Full Text] [Related]
38. Efficient three-phase reconstruction of heterogeneous material from 2D cross-sections via phase-recovery algorithm. Hasanabadi A; Baniassadi M; Abrinia K; Safdari M; Garmestani H J Microsc; 2016 Dec; 264(3):384-393. PubMed ID: 27518875 [TBL] [Abstract][Full Text] [Related]
39. Infiltrated NiCo Alloy Nanoparticle Decorated Perovskite Oxide: A Highly Active, Stable, and Antisintering Anode for Direct-Ammonia Solid Oxide Fuel Cells. Song Y; Li H; Xu M; Yang G; Wang W; Ran R; Zhou W; Shao Z Small; 2020 Jul; 16(28):e2001859. PubMed ID: 32510184 [TBL] [Abstract][Full Text] [Related]
40. Mesoporous NiO-samaria doped ceria for low-temperature solid oxide fuel cells. Kim JY; Kim JH; Choi HW; Kim KH; Park SJ J Nanosci Nanotechnol; 2014 Aug; 14(8):6399-403. PubMed ID: 25936125 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]