BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1144 related articles for article (PubMed ID: 31900780)

  • 21. Efficient degradation of rhodamine B using modified graphite felt gas diffusion electrode by electro-Fenton process.
    Tian J; Olajuyin AM; Mu T; Yang M; Xing J
    Environ Sci Pollut Res Int; 2016 Jun; 23(12):11574-83. PubMed ID: 26931661
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Degradation of emerging pollutants on bifunctional ZnFeV LDH@graphite felt cathode through prominent catalytic activity in heterogeneous electrocatalytic processes.
    Keyikoğlu R; Khataee A; Orooji Y
    J Environ Manage; 2023 Sep; 342():118090. PubMed ID: 37182481
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Study of the performance of a cylindrical flow-through electro-Fenton reactor using different arrangements of carbon felt electrodes: effect of key operating parameters.
    García-Espinoza JD; Robles I; Durán-Moreno A; Godínez LA
    Environ Sci Pollut Res Int; 2022 Jun; 29(28):42305-42318. PubMed ID: 35075566
    [TBL] [Abstract][Full Text] [Related]  

  • 24. BiVO
    Lai W; Chen Z; Ye S; Xu Y; Xie G; Kuang C; Li Y; Zheng L; Wei L
    J Hazard Mater; 2021 Apr; 408():124621. PubMed ID: 33383458
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Anodized graphite felt as an efficient cathode for in-situ hydrogen peroxide production and Electro-Fenton degradation of rhodamine B.
    Xu H; Guo H; Chai C; Li N; Lin X; Xu W
    Chemosphere; 2022 Jan; 286(Pt 3):131936. PubMed ID: 34426276
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mineralization of Methyl Orange azo dye by processes based on H
    Márquez AA; Sirés I; Brillas E; Nava JL
    Chemosphere; 2020 Nov; 259():127466. PubMed ID: 32615456
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Partial degradation of levofloxacin for biodegradability improvement by electro-Fenton process using an activated carbon fiber felt cathode.
    Gong Y; Li J; Zhang Y; Zhang M; Tian X; Wang A
    J Hazard Mater; 2016 Mar; 304():320-8. PubMed ID: 26561756
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A carbon felt cathode modified by acidic oxidised carbon nanotubes for the high H
    Gao Y; Xie F; Bai H; Zeng L; Zhang J; Liu M; Zhu W
    Environ Technol; 2024 Apr; 45(9):1669-1682. PubMed ID: 36408871
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Degradation of refractory organics in dual-cathode electro-Fenton using air-cathode for H
    Wang D; Hu J; Liu B; Hou H; Yang J; Li Y; Zhu Y; Liang S; Xiao K
    J Hazard Mater; 2021 Jun; 412():125269. PubMed ID: 33550124
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrogeneration of H
    Rivera-Vera C; Rodrigo-Rodrigo MA; Saez C; Thiam A; Salazar-González R
    Chemosphere; 2024 Jan; 348():140764. PubMed ID: 37992901
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced electro-Fenton catalytic performance with in-situ grown Ce/Fe@NPC-GF as self-standing cathode: Fabrication, influence factors and mechanism.
    Qiu S; Wang Y; Wan J; Ma Y; Yan Z; Yang S
    Chemosphere; 2021 Jun; 273():130269. PubMed ID: 33773811
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electro-generation of hydrogen peroxide using a graphite cathode from exhausted batteries: study of influential parameters on electro-Fenton process.
    Diouf I; Dia O; Diedhiou MB; Drogui P; Toure AO; Lo SM; Rumeau M; Mar/Diop CG
    Environ Technol; 2020 Apr; 41(11):1434-1445. PubMed ID: 30325702
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative study of the removal of direct red 23 by anodic oxidation, electro-Fenton, photo-anodic oxidation and photoelectro-Fenton in chloride and sulfate media.
    Titchou FE; Zazou H; Afanga H; Jamila EG; Ait Akbour R; Hamdani M; Oturan MA
    Environ Res; 2022 Mar; 204(Pt D):112353. PubMed ID: 34774509
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient degradation of chloroquine drug by electro-Fenton oxidation: Effects of operating conditions and degradation mechanism.
    Midassi S; Bedoui A; Bensalah N
    Chemosphere; 2020 Dec; 260():127558. PubMed ID: 32693256
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mineralization of salicylic acid in acidic aqueous medium by electrochemical advanced oxidation processes using platinum and boron-doped diamond as anode and cathodically generated hydrogen peroxide.
    Guinea E; Arias C; Cabot PL; Garrido JA; Rodríguez RM; Centellas F; Brillas E
    Water Res; 2008 Jan; 42(1-2):499-511. PubMed ID: 17692891
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Advanced treatment of coking wastewater with a novel heterogeneous electro-Fenton technology].
    Li HT; Li YP; Zhang AY; Cao HB; Li XG; Zhang Y
    Huan Jing Ke Xue; 2011 Jan; 32(1):171-8. PubMed ID: 21404683
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Carbonaceous cathode materials for electro-Fenton technology: Mechanism, kinetics, recent advances, opportunities and challenges.
    Nair KM; Kumaravel V; Pillai SC
    Chemosphere; 2021 Apr; 269():129325. PubMed ID: 33385665
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A flow-through electro-Fenton process using modified activated carbon fiber cathode for orange II removal.
    Jiao Y; Ma L; Tian Y; Zhou M
    Chemosphere; 2020 Aug; 252():126483. PubMed ID: 32197180
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient H
    Zhou W; Rajic L; Meng X; Nazari R; Zhao Y; Wang Y; Gao J; Qin Y; Alshawabkeh AN
    Chem Eng J; 2019 May; 364():428-439. PubMed ID: 32581640
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Heterogeneous degradation of amoxicillin in the presence of synthesized alginate-Fe beads catalyst by the electro-Fenton process using a graphite cathode recovered from used batteries.
    Kadji H; Yahiaoui I; Akkouche F; Boudrahem F; Ramdani S; Saidane A; Manseri A; Amrane A; Aissani-Benissad F
    Water Sci Technol; 2022 Mar; 85(6):1840-1854. PubMed ID: 35358075
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 58.