These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 31901079)
1. Cryo-EM reveals the architecture of the dimeric cytochrome P450 CYP102A1 enzyme and conformational changes required for redox partner recognition. Su M; Chakraborty S; Osawa Y; Zhang H J Biol Chem; 2020 Feb; 295(6):1637-1645. PubMed ID: 31901079 [TBL] [Abstract][Full Text] [Related]
2. The full-length cytochrome P450 enzyme CYP102A1 dimerizes at its reductase domains and has flexible heme domains for efficient catalysis. Zhang H; Yokom AL; Cheng S; Su M; Hollenberg PF; Southworth DR; Osawa Y J Biol Chem; 2018 May; 293(20):7727-7736. PubMed ID: 29618513 [TBL] [Abstract][Full Text] [Related]
3. Prediction of Monomeric and Dimeric Structures of CYP102A1 Using AlphaFold2 and AlphaFold Multimer and Assessment of Point Mutation Effect on the Efficiency of Intra- and Interprotein Electron Transfer. Ivanov YD; Taldaev A; Lisitsa AV; Ponomarenko EA; Archakov AI Molecules; 2022 Feb; 27(4):. PubMed ID: 35209175 [TBL] [Abstract][Full Text] [Related]
4. Effect of the Insertion of a Glycine Residue into the Loop Spanning Residues 536-541 on the Semiquinone State and Redox Properties of the Flavin Mononucleotide-Binding Domain of Flavocytochrome P450BM-3 from Bacillus megaterium. Chen HC; Swenson RP Biochemistry; 2008 Dec; 47(52):13788-99. PubMed ID: 19055322 [TBL] [Abstract][Full Text] [Related]
5. Characterization of the structure and interactions of P450 BM3 using hybrid mass spectrometry approaches. Jeffreys LN; Pacholarz KJ; Johannissen LO; Girvan HM; Barran PE; Voice MW; Munro AW J Biol Chem; 2020 May; 295(22):7595-7607. PubMed ID: 32303637 [TBL] [Abstract][Full Text] [Related]
6. [Electrochemical measurement of intraprorein and interprotein electron transfer]. Shumiantseva VV; Bulko TV; Lisitsina VB; Urlakher VB; Kuzikov AB; Suprun EV; Archakov AI Biofizika; 2013; 58(3):453-60. PubMed ID: 24159813 [TBL] [Abstract][Full Text] [Related]
7. Expression, purification, and characterization of Bacillus subtilis cytochromes P450 CYP102A2 and CYP102A3: flavocytochrome homologues of P450 BM3 from Bacillus megaterium. Gustafsson MC; Roitel O; Marshall KR; Noble MA; Chapman SK; Pessegueiro A; Fulco AJ; Cheesman MR; von Wachenfeldt C; Munro AW Biochemistry; 2004 May; 43(18):5474-87. PubMed ID: 15122913 [TBL] [Abstract][Full Text] [Related]
8. Obligatory intermolecular electron-transfer from FAD to FMN in dimeric P450BM-3. Kitazume T; Haines DC; Estabrook RW; Chen B; Peterson JA Biochemistry; 2007 Oct; 46(42):11892-901. PubMed ID: 17902705 [TBL] [Abstract][Full Text] [Related]
9. Scanning chimeragenesis: the approach used to change the substrate selectivity of fatty acid monooxygenase CYP102A1 to that of terpene omega-hydroxylase CYP4C7. Chen CK; Berry RE; Shokhireva TKh; Murataliev MB; Zhang H; Walker FA J Biol Inorg Chem; 2010 Feb; 15(2):159-74. PubMed ID: 19727859 [TBL] [Abstract][Full Text] [Related]
10. Kinetics and activation parameters for oxidations of styrene by Compounds I from the cytochrome P450(BM-3) (CYP102A1) heme domain and from CYP119. Yuan X; Wang Q; Horner JH; Sheng X; Newcomb M Biochemistry; 2009 Sep; 48(38):9140-6. PubMed ID: 19708688 [TBL] [Abstract][Full Text] [Related]
11. Construction of a thermostable cytochrome P450 chimera derived from self-sufficient mesophilic parents. Eiben S; Bartelmäs H; Urlacher VB Appl Microbiol Biotechnol; 2007 Jul; 75(5):1055-61. PubMed ID: 17468867 [TBL] [Abstract][Full Text] [Related]
12. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase. Roitel O; Scrutton NS; Munro AW Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506 [TBL] [Abstract][Full Text] [Related]
13. Hole Hopping through Tryptophan in Cytochrome P450. Ener ME; Gray HB; Winkler JR Biochemistry; 2017 Jul; 56(28):3531-3538. PubMed ID: 28689401 [TBL] [Abstract][Full Text] [Related]
14. Role of the linker region connecting the reductase and heme domains in cytochrome P450BM-3. Govindaraj S; Poulos TL Biochemistry; 1995 Sep; 34(35):11221-6. PubMed ID: 7669780 [TBL] [Abstract][Full Text] [Related]
15. Functional characterization of the re-face loop spanning residues 536-541 and its interactions with the cofactor in the flavin mononucleotide-binding domain of flavocytochrome P450 from Bacillus megaterium. Kasim M; Chen HC; Swenson RP Biochemistry; 2009 Jun; 48(23):5131-41. PubMed ID: 19432415 [TBL] [Abstract][Full Text] [Related]
16. [Atomic force microscopy visualization and measurement of the activity and physicochemical properties of single monomeric and oligomeric enzymes]. Ivanov IuD; Bukharina NS; Pleshakova TO; Frantsuzov PA; Krokhin NV; Ziborov VS; Archakov AI Biofizika; 2011; 56(5):939-44. PubMed ID: 22117449 [TBL] [Abstract][Full Text] [Related]
17. Flavin supported fatty acid oxidation by the heme domain of Bacillus megaterium cytochrome P450BM-3. Gonvindaraj S; Li H; Poulos TL Biochem Biophys Res Commun; 1994 Sep; 203(3):1745-9. PubMed ID: 7945324 [TBL] [Abstract][Full Text] [Related]
18. The effect of mutation of F87 on the properties of CYP102A1-CYP4C7 chimeras: altered regiospecificity and substrate selectivity. Chen CK; Shokhireva TKh; Berry RE; Zhang H; Walker FA J Biol Inorg Chem; 2008 Jun; 13(5):813-24. PubMed ID: 18392864 [TBL] [Abstract][Full Text] [Related]
19. Allosteric modulation of cytochrome P450 enzymes by the NADPH cytochrome P450 reductase FMN-containing domain. Burris-Hiday SD; Scott EE J Biol Chem; 2023 Sep; 299(9):105112. PubMed ID: 37517692 [TBL] [Abstract][Full Text] [Related]
20. Mapping protein-protein interactions in homodimeric CYP102A1 by crosslinking and mass spectrometry. Felker D; Zhang H; Bo Z; Lau M; Morishima Y; Schnell S; Osawa Y Biophys Chem; 2021 Jul; 274():106590. PubMed ID: 33894563 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]