These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. Photon-free (s)CMOS camera characterization for artifact reduction in high- and super-resolution microscopy. Diekmann R; Deschamps J; Li Y; Deguchi T; Tschanz A; Kahnwald M; Matti U; Ries J Nat Commun; 2022 Jun; 13(1):3362. PubMed ID: 35690614 [TBL] [Abstract][Full Text] [Related]
25. Electronic cameras for low-light microscopy. Rasnik I; French T; Jacobson K; Berland K Methods Cell Biol; 2013; 114():211-41. PubMed ID: 23931509 [TBL] [Abstract][Full Text] [Related]
26. Algorithmic corrections for localization microscopy with sCMOS cameras - characterisation of a computationally efficient localization approach. Lin R; Clowsley AH; Jayasinghe ID; Baddeley D; Soeller C Opt Express; 2017 May; 25(10):11701-11716. PubMed ID: 28788730 [TBL] [Abstract][Full Text] [Related]
27. Fast frame scanning camera system for light-sheet microscopy. Wu D; Zhou X; Yao B; Li R; Yang Y; Peng T; Lei M; Dan D; Ye T Appl Opt; 2015 Oct; 54(29):8632-6. PubMed ID: 26479797 [TBL] [Abstract][Full Text] [Related]
28. Expectation maximization based framework for joint localization and parameter estimation in single particle tracking from segmented images. Lin Y; Andersson SB PLoS One; 2021; 16(5):e0243115. PubMed ID: 34019541 [TBL] [Abstract][Full Text] [Related]
29. Flexible method to obtain high sensitivity, low-cost CCD cameras for video microscopy. Cinelli AR J Neurosci Methods; 1998 Nov; 85(1):33-43. PubMed ID: 9874139 [TBL] [Abstract][Full Text] [Related]
31. Salamander olfactory bulb neuronal activity observed by video rate, voltage-sensitive dye imaging. I. Characterization of the recording system. Cinelli AR; Neff SR; Kauer JS J Neurophysiol; 1995 May; 73(5):2017-32. PubMed ID: 7542698 [TBL] [Abstract][Full Text] [Related]
32. FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data. Min J; Vonesch C; Kirshner H; Carlini L; Olivier N; Holden S; Manley S; Ye JC; Unser M Sci Rep; 2014 Apr; 4():4577. PubMed ID: 24694686 [TBL] [Abstract][Full Text] [Related]
33. Advanced fluorescence lifetime imaging algorithms for CMOS single-photon sensor based multi-focal multi-photon microscopy. Li DD; Poland S; Coelho S; Tyndall D; Zhang W; Richardson J; Henderson RK; Ameer-Beg SM Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3036-9. PubMed ID: 24110367 [TBL] [Abstract][Full Text] [Related]
34. Three-dimensional integral imaging in photon-starved environments with high-sensitivity image sensors. Markman A; O'Connor T; Hotaka H; Ohsuka S; Javidi B Opt Express; 2019 Sep; 27(19):26355-26368. PubMed ID: 31674519 [TBL] [Abstract][Full Text] [Related]
35. A comparison of imaging methods for use in an array biosensor. Golden JP; Ligler FS Biosens Bioelectron; 2002 Sep; 17(9):719-25. PubMed ID: 12191919 [TBL] [Abstract][Full Text] [Related]
36. A comparative study of EM-CCD and CMOS cameras for particle ion trajectory imaging. Yamamoto S; Yoshino M; Nakanishi K; Yogo K; Kamada K; Yoshikawa A; Kataoka J Appl Radiat Isot; 2024 Feb; 204():111143. PubMed ID: 38101006 [TBL] [Abstract][Full Text] [Related]
37. Calibration of a wide-field frequency-domain fluorescence lifetime microscopy system using light emitting diodes as light sources. Elder AD; Frank JH; Swartling J; Dai X; Kaminski CF J Microsc; 2006 Nov; 224(Pt 2):166-80. PubMed ID: 17204064 [TBL] [Abstract][Full Text] [Related]