These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 31901371)

  • 41. Potential Mechanisms of Abiotic Stress Tolerance in Crop Plants Induced by Thiourea.
    Waqas MA; Kaya C; Riaz A; Farooq M; Nawaz I; Wilkes A; Li Y
    Front Plant Sci; 2019; 10():1336. PubMed ID: 31736993
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Developing climate-resilient crops: improving plant tolerance to stress combination.
    Rivero RM; Mittler R; Blumwald E; Zandalinas SI
    Plant J; 2022 Jan; 109(2):373-389. PubMed ID: 34482588
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Is Endophytic Colonization of Host Plants a Method of Alleviating Drought Stress? Conceptualizing the Hidden World of Endophytes.
    Byregowda R; Prasad SR; Oelmüller R; Nataraja KN; Prasanna Kumar MK
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012460
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Advances in Chemical Priming to Enhance Abiotic Stress Tolerance in Plants.
    Sako K; Nguyen HM; Seki M
    Plant Cell Physiol; 2021 Feb; 61(12):1995-2003. PubMed ID: 32966567
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The power of seaweeds as plant biostimulants to boost crop production under abiotic stress.
    Deolu-Ajayi AO; van der Meer IM; van der Werf A; Karlova R
    Plant Cell Environ; 2022 Sep; 45(9):2537-2553. PubMed ID: 35815342
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Stress memory responses and seed priming correlate with drought tolerance in plants: an overview.
    Liu X; Quan W; Bartels D
    Planta; 2022 Jan; 255(2):45. PubMed ID: 35066685
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biogenic Silver Nanoparticles as a Stress Alleviator in Plants: A Mechanistic Overview.
    Abasi F; Raja NI; Mashwani ZUR; Amjad MS; Ehsan M; Mustafa N; Haroon M; Proćków J
    Molecules; 2022 May; 27(11):. PubMed ID: 35684312
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Stress-induced changes in wheat grain composition and quality.
    Ashraf M
    Crit Rev Food Sci Nutr; 2014; 54(12):1576-83. PubMed ID: 24580559
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Arbuscular mycorrhizal fungal responses to abiotic stresses: A review.
    Lenoir I; Fontaine J; Lounès-Hadj Sahraoui A
    Phytochemistry; 2016 Mar; 123():4-15. PubMed ID: 26803396
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Analysis of Brassica oleracea early stage abiotic stress responses reveals tolerance in multiple crop types and for multiple sources of stress.
    Beacham AM; Hand P; Pink DA; Monaghan JM
    J Sci Food Agric; 2017 Dec; 97(15):5271-5277. PubMed ID: 28474472
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Overexpression of a nascent polypeptide associated complex gene (SaβNAC) of Spartina alterniflora improves tolerance to salinity and drought in transgenic Arabidopsis.
    Karan R; Subudhi PK
    Biochem Biophys Res Commun; 2012 Aug; 424(4):747-52. PubMed ID: 22809508
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The membrane tethered transcription factor EcbZIP17 from finger millet promotes plant growth and enhances tolerance to abiotic stresses.
    Ramakrishna C; Singh S; Raghavendrarao S; Padaria JC; Mohanty S; Sharma TR; Solanke AU
    Sci Rep; 2018 Feb; 8(1):2148. PubMed ID: 29391403
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Inducing drought tolerance in plants: recent advances.
    Ashraf M
    Biotechnol Adv; 2010; 28(1):169-83. PubMed ID: 19914371
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Salinity Tolerance in Plants: Trends and Perspectives.
    Hernández JA
    Int J Mol Sci; 2019 May; 20(10):. PubMed ID: 31096626
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Manipulation of glyoxalase pathway confers tolerance to multiple stresses in rice.
    Gupta BK; Sahoo KK; Ghosh A; Tripathi AK; Anwar K; Das P; Singh AK; Pareek A; Sopory SK; Singla-Pareek SL
    Plant Cell Environ; 2018 May; 41(5):1186-1200. PubMed ID: 28425127
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Potential utilization of NAC transcription factors to enhance abiotic stress tolerance in plants by biotechnological approach.
    Tran LS; Nishiyama R; Yamaguchi-Shinozaki K; Shinozaki K
    GM Crops; 2010; 1(1):32-9. PubMed ID: 21912210
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Elucidating the Response of Crop Plants towards Individual, Combined and Sequentially Occurring Abiotic Stresses.
    Anwar K; Joshi R; Dhankher OP; Singla-Pareek SL; Pareek A
    Int J Mol Sci; 2021 Jun; 22(11):. PubMed ID: 34204152
    [TBL] [Abstract][Full Text] [Related]  

  • 58. High temperatures modify plant responses to abiotic stress conditions.
    Balfagón D; Zandalinas SI; Mittler R; Gómez-Cadenas A
    Physiol Plant; 2020 Nov; 170(3):335-344. PubMed ID: 32533896
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Role of nanomaterials in plants under challenging environments.
    Khan MN; Mobin M; Abbas ZK; AlMutairi KA; Siddiqui ZH
    Plant Physiol Biochem; 2017 Jan; 110():194-209. PubMed ID: 27269705
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A comparative screening of abiotic stress tolerance in early flowering rice mutants.
    Afzal S; Sirohi P; Yadav AK; Singh MP; Kumar A; Singh NK
    J Biotechnol; 2019 Aug; 302():112-122. PubMed ID: 31279796
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.