BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 31901604)

  • 1. Reverse flotation efficiency and mechanism of various collectors for recycling waste printed circuit boards.
    Yao Y; Bai Q; He J; Zhu L; Zhou K; Zhao Y
    Waste Manag; 2020 Feb; 103():218-227. PubMed ID: 31901604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recovery of metals in waste printed circuit boards by flotation technology with soap collector prepared by waste oil through saponification.
    Zhu XN; Nie CC; Zhang H; Lyu XJ; Qiu J; Li L
    Waste Manag; 2019 Apr; 89():21-26. PubMed ID: 31079733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced flotation efficiency of metal from waste printed circuit boards modified by alkaline immersion.
    Dai G; Han J; Duan C; Tang L; Peng Y; Chen Y; Jiang H; Zhu Z
    Waste Manag; 2021 Feb; 120():795-804. PubMed ID: 33234472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Copper recovery from waste printed circuit boards by the flotation-leaching process optimized using response surface methodology.
    Wang C; Sun R; Xing B
    J Air Waste Manag Assoc; 2021 Dec; 71(12):1483-1491. PubMed ID: 33433266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recovery of metallic concentrations from waste printed circuit boards via reverse floatation.
    He J; Duan C
    Waste Manag; 2017 Feb; 60():618-628. PubMed ID: 27866997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separation of metals from metal-rich particles of crushed waste printed circuit boards by low-pressure filtration.
    Meng L; Guo L; Guo Z
    Waste Manag; 2019 Feb; 84():227-234. PubMed ID: 30691897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel approach to recycling of glass fibers from nonmetal materials of waste printed circuit boards.
    Zheng Y; Shen Z; Ma S; Cai C; Zhao X; Xing Y
    J Hazard Mater; 2009 Oct; 170(2-3):978-82. PubMed ID: 19520504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of waste printed circuit boards characteristics and nonmetal surface energy regulation on flotation.
    Han J; Duan C; Li G; Huang L; Chai X; Wang D
    Waste Manag; 2018 Oct; 80():81-88. PubMed ID: 30455030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical activation to enhance the natural floatability of waste printed circuit boards.
    Zhu XN; Zhang LY; Dong SL; Kou WJ; Nie CC; Lyu XJ; Qiu J; Li L; Liu ZX; Wu P
    Waste Manag; 2020 May; 109():222-230. PubMed ID: 32416564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced cleaner flotation behavior of non-metallic particles in waste printed circuit boards: From the perspective of particle size.
    Nie CC; Shi SX; Zhu XN; Jiang SQ; Gao WH; Su HL; Li CM; Lyu XJ
    Waste Manag; 2022 Nov; 153():167-177. PubMed ID: 36099727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recycling-oriented methodology to sample and characterize the metal composition of waste Printed Circuit Boards.
    Hubau A; Chagnes A; Minier M; Touzé S; Chapron S; Guezennec AG
    Waste Manag; 2019 May; 91():62-71. PubMed ID: 31203943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating waste printed circuit boards recycling: Opportunities and challenges, a mini review.
    Awasthi AK; Zlamparet GI; Zeng X; Li J
    Waste Manag Res; 2017 Apr; 35(4):346-356. PubMed ID: 28097947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recycling of metals from pretreated waste printed circuit boards effectively in stirred tank reactor by a moderately thermophilic culture.
    Xia MC; Wang YP; Peng TJ; Shen L; Yu RL; Liu YD; Chen M; Li JK; Wu XL; Zeng WM
    J Biosci Bioeng; 2017 Jun; 123(6):714-721. PubMed ID: 28319019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concentration of precious metals from waste printed circuit boards using supergravity separation.
    Meng L; Guo L; Zhong Y; Wang Z; Chen K; Guo Z
    Waste Manag; 2018 Dec; 82():147-155. PubMed ID: 30509576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eco-friendly approach for enhancing the floatability of non-metallic components in waste printed circuit boards: Adding gutter oil during dry grinding.
    Nie CC; Jiang SQ; Li XG; Wang XR; Li ZH; Zhu XN; Lyu XJ; You XF; Li L
    Waste Manag; 2023 Dec; 172():71-79. PubMed ID: 37717464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization and mechanical separation of metals from computer Printed Circuit Boards (PCBs) based on mineral processing methods.
    Sarvar M; Salarirad MM; Shabani MA
    Waste Manag; 2015 Nov; 45():246-57. PubMed ID: 26143534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of precious metals positioning in waste printed circuit boards and the economic benefits of recycling.
    Huang T; Zhu J; Huang X; Ruan J; Xu Z
    Waste Manag; 2022 Feb; 139():105-115. PubMed ID: 34959086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concentration of precious metals during their recovery from electronic waste.
    Cayumil R; Khanna R; Rajarao R; Mukherjee PS; Sahajwalla V
    Waste Manag; 2016 Nov; 57():121-130. PubMed ID: 26712661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recovery of metals from waste printed circuit boards by supercritical water pre-treatment combined with acid leaching process.
    Xiu FR; Qi Y; Zhang FS
    Waste Manag; 2013 May; 33(5):1251-7. PubMed ID: 23474342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental and economic performance analysis of recycling waste printed circuit boards using life cycle assessment.
    Pokhrel P; Lin SL; Tsai CT
    J Environ Manage; 2020 Dec; 276():111276. PubMed ID: 32871467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.