BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 31901611)

  • 1. DeepCQ: Deep multi-task conditional quantification network for estimation of left ventricle parameters.
    Chen R; Xu C; Dong Z; Liu Y; Du X
    Comput Methods Programs Biomed; 2020 Feb; 184():105288. PubMed ID: 31901611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct Segmentation-Based Full Quantification for Left Ventricle via Deep Multi-Task Regression Learning Network.
    Du X; Tang R; Yin S; Zhang Y; Li S
    IEEE J Biomed Health Inform; 2019 May; 23(3):942-948. PubMed ID: 30387757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Full left ventricle quantification via deep multitask relationships learning.
    Xue W; Brahm G; Pandey S; Leung S; Li S
    Med Image Anal; 2018 Jan; 43():54-65. PubMed ID: 28987903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Left ventricle quantification with sample-level confidence estimation via Bayesian neural network.
    Xue W; Guo T; Ni D
    Comput Med Imaging Graph; 2020 Sep; 84():101753. PubMed ID: 32755759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A task-unified network with transformer and spatial-temporal convolution for left ventricular quantification.
    Li D; Peng Y; Sun J; Guo Y
    Sci Rep; 2023 Aug; 13(1):13529. PubMed ID: 37598235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D Multi-Attention Guided Multi-Task Learning Network for Automatic Gastric Tumor Segmentation and Lymph Node Classification.
    Zhang Y; Li H; Du J; Qin J; Wang T; Chen Y; Liu B; Gao W; Ma G; Lei B
    IEEE Trans Med Imaging; 2021 Jun; 40(6):1618-1631. PubMed ID: 33646948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An iterative multi-path fully convolutional neural network for automatic cardiac segmentation in cine MR images.
    Ma Z; Wu X; Wang X; Song Q; Yin Y; Cao K; Wang Y; Zhou J
    Med Phys; 2019 Dec; 46(12):5652-5665. PubMed ID: 31605627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Left Ventricle Quantification Challenge: A Comprehensive Comparison and Evaluation of Segmentation and Regression for Mid-Ventricular Short-Axis Cardiac MR Data.
    Xue W; Li J; Hu Z; Kerfoot E; Clough J; Oksuz I; Xu H; Grau V; Guo F; Ng M; Li X; Li Q; Liu L; Ma J; Grinias E; Tziritas G; Yan W; Atehortua A; Garreau M; Jang Y; Debus A; Ferrante E; Yang G; Hua T; Li S
    IEEE J Biomed Health Inform; 2021 Sep; 25(9):3541-3553. PubMed ID: 33684050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural multi-atlas label fusion: Application to cardiac MR images.
    Yang H; Sun J; Li H; Wang L; Xu Z
    Med Image Anal; 2018 Oct; 49():60-75. PubMed ID: 30099151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI.
    Avendi MR; Kheradvar A; Jafarkhani H
    Med Image Anal; 2016 May; 30():108-119. PubMed ID: 26917105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic pixel-wise weighting-based fully convolutional neural networks for left ventricle segmentation in short-axis MRI.
    Wang Z; Xie L; Qi J
    Magn Reson Imaging; 2020 Feb; 66():131-140. PubMed ID: 31465788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Commensal correlation network between segmentation and direct area estimation for bi-ventricle quantification.
    Luo G; Dong S; Wang W; Wang K; Cao S; Tam C; Zhang H; Howey J; Ohorodnyk P; Li S
    Med Image Anal; 2020 Jan; 59():101591. PubMed ID: 31704452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Multi-channel Deep Learning Approach for Segmentation of the Left Ventricular Endocardium from Cardiac Images.
    Yang X; Su Y; Tjio G; Yang F; Ding J; Kumar S; Leng S; Zhao X; Tan RS; Zhong L
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4016-4019. PubMed ID: 31946752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic quantification of the LV function and mass: A deep learning approach for cardiovascular MRI.
    Curiale AH; Colavecchia FD; Mato G
    Comput Methods Programs Biomed; 2019 Feb; 169():37-50. PubMed ID: 30638590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fully automated segmentation of the left ventricle in cine cardiac MRI using neural network regression.
    Tan LK; McLaughlin RA; Lim E; Abdul Aziz YF; Liew YM
    J Magn Reson Imaging; 2018 Jul; 48(1):140-152. PubMed ID: 29316024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Convolutional neural network regression for short-axis left ventricle segmentation in cardiac cine MR sequences.
    Tan LK; Liew YM; Lim E; McLaughlin RA
    Med Image Anal; 2017 Jul; 39():78-86. PubMed ID: 28437634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calibration of cine MRI segmentation probability for uncertainty estimation using a multi-task cross-task learning architecture.
    Hasan SMK; Linte CA
    Proc SPIE Int Soc Opt Eng; 2022; 12034():. PubMed ID: 35634478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel solution of using deep learning for left ventricle detection: Enhanced feature extraction.
    Sharma K; Alsadoon A; Prasad PWC; Al-Dala'in T; Nguyen TQV; Pham DTH
    Comput Methods Programs Biomed; 2020 Dec; 197():105751. PubMed ID: 32957061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cine MRI analysis by deep learning of optical flow: Adding the temporal dimension.
    Yan W; Wang Y; van der Geest RJ; Tao Q
    Comput Biol Med; 2019 Aug; 111():103356. PubMed ID: 31323604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An SPCNN-GVF-based approach for the automatic segmentation of left ventricle in cardiac cine MR images.
    Ma Y; Wang L; Ma Y; Dong M; Du S; Sun X
    Int J Comput Assist Radiol Surg; 2016 Nov; 11(11):1951-1964. PubMed ID: 27295053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.