These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 31901837)

  • 1. Absorbed dose measurements from a
    D'Arienzo M; Pimpinella M; De Coste V; Capogni M; Ferrari P; Mariotti F; Iaccarino G; Ungania S; Strigari L
    Phys Med; 2020 Jan; 69():127-133. PubMed ID: 31901837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using LiF:Mg,Cu,P TLDs to estimate the absorbed dose to water in liquid water around an 192Ir brachytherapy source.
    Lucas PA; Aubineau-Lanièce I; Lourenço V; Vermesse D; Cutarella D
    Med Phys; 2014 Jan; 41(1):011711. PubMed ID: 24387503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response of LiF:Mg,Ti thermoluminescent dosimeters at photon energies relevant to the dosimetry of brachytherapy (<1 MeV).
    Tedgren AC; Hedman A; Grindborg JE; Carlsson GA
    Med Phys; 2011 Oct; 38(10):5539-50. PubMed ID: 21992372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variations in dose response with x-ray energy of LiF:Mg,Cu,P thermoluminescence dosimeters: implications for clinical dosimetry.
    Duggan L; Hood C; Warren-Forward H; Haque M; Kron T
    Phys Med Biol; 2004 Sep; 49(17):3831-45. PubMed ID: 15470908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of absorbed dose to water around a clinical HDR (192)Ir source using LiF:Mg,Ti TLDs demonstrates an LET dependence of detector response.
    Carlsson Tedgren A; Elia R; Hedtjarn H; Olsson S; Alm Carlsson G
    Med Phys; 2012 Feb; 39(2):1133-40. PubMed ID: 22320824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility of lateral dose profile measurements in a small field using TLDs.
    Zhang B; Zhu J; Li Y; Chen S; Chen L; Liu X
    Phys Med Biol; 2015 Feb; 60(3):N47-57. PubMed ID: 25586905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermoluminescent dosimeters (TLD-100) for absorbed dose measurements in alpha-emitting radionuclides.
    White AJ; Jollota SP; Hammer CG; Khan AU; DeWerd LA; Culberson WS
    Appl Radiat Isot; 2024 Jun; 208():111307. PubMed ID: 38564840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LiF:Mg,Ti TLD response as a function of photon energy for moderately filtered x-ray spectra in the range of 20-250 kVp relative to 60Co.
    Nunn AA; Davis SD; Micka JA; DeWerd LA
    Med Phys; 2008 May; 35(5):1859-69. PubMed ID: 18561661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An investigation into the accuracy of Acuros(TM) BV in heterogeneous phantoms for a (192)Ir HDR source using LiF TLDs.
    Manning S; Nyathi T
    Australas Phys Eng Sci Med; 2014 Sep; 37(3):505-14. PubMed ID: 24866931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of improved TLD dosimetry on the determination of dose rate constants for (125)I and (103)Pd brachytherapy seeds.
    Rodriguez M; Rogers DW
    Med Phys; 2014 Nov; 41(11):114301. PubMed ID: 25370677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Whole-body dose and energy measurements in radiotherapy by a combination of LiF:Mg,Cu,P and LiF:Mg,Ti.
    Hauri P; Schneider U
    Z Med Phys; 2018 Apr; 28(2):96-109. PubMed ID: 28807441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of Monte Carlo simulated absorbed-dose-to-water inside a custom SPECT/CT phantom using active and passive dosimeters: a feasibility study using
    Bertinetti A; Rodrigues M; Palmer B; Garcia TR; Vija AH; Culberson W
    Phys Med Biol; 2023 Apr; 68(8):. PubMed ID: 36944253
    [No Abstract]   [Full Text] [Related]  

  • 13. Energy correction factors of LiF powder TLDs irradiated in high-energy electron beams and applied to mailed dosimetry for quality assurance networks.
    Marre D; Ferreira IH; Bridier A; Björeland A; Svensson H; Dutreix A; Chavaudra J
    Phys Med Biol; 2000 Dec; 45(12):3657-74. PubMed ID: 11131191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of LiF:Mg,Ti (TLD-100) for Intraoperative Electron Radiation Therapy Quality Assurance.
    Liuzzi R; Savino F; D'Avino V; Pugliese M; Cella L
    PLoS One; 2015; 10(10):e0139287. PubMed ID: 26427065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The application of LiF:Mg,Cu,P to large scale personnel dosimetry: current status and future directions.
    Moscovitch M; St John TJ; Cassata JR; Blake PK; Rotunda JE; Ramlo M; Velbeck KJ; Luo LZ
    Radiat Prot Dosimetry; 2006; 119(1-4):248-54. PubMed ID: 16835277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of LiF:Mg,Ti and LiF:Mg,Cu,P TL efficiency for X-rays and their application to Monte Carlo simulations of dosemeter response.
    Hranitzky C; Stadtmann H; Olko P
    Radiat Prot Dosimetry; 2006; 119(1-4):483-6. PubMed ID: 16822775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of the intrinsic energy dependence of LiF:Mg,Ti thermoluminescent dosimeters for 125I and 103Pd brachytherapy sources relative to 60Co.
    Reed JL; Rasmussen BE; Davis SD; Micka JA; Culberson WS; DeWerd LA
    Med Phys; 2014 Dec; 41(12):122103. PubMed ID: 25471976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo study of TLD measurements in air cavities.
    Haraldsson P; Knöös T; Nyström H; Engström P
    Phys Med Biol; 2003 Sep; 48(18):N253-9. PubMed ID: 14529213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. USE OF A SIMPLE THERMALISED NEUTRON FIELD FOR QUALITY ACCEPTANCE OF WHOLE BODY TLDS.
    Gilvin PJ; Baker ST; Eakins JS; Tanner RJ
    Radiat Prot Dosimetry; 2016 Sep; 170(1-4):108-12. PubMed ID: 26801052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uncertainty assessment of a two element LiF:Mg,Ti TL personal dosemeter using Monte-Carlo techniques.
    Stadtmann H; Hranitzky C
    Radiat Prot Dosimetry; 2011 Mar; 144(1-4):67-71. PubMed ID: 21245065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.