These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 31902060)
21. Metabolism of acyl-lipids in Chlamydomonas reinhardtii. Li-Beisson Y; Beisson F; Riekhof W Plant J; 2015 May; 82(3):504-522. PubMed ID: 25660108 [TBL] [Abstract][Full Text] [Related]
22. Highly Time-Resolved Metabolic Reprogramming toward Differential Levels of Phosphate in Jang CH; Lee G; Park YC; Kim KH; Lee DY J Microbiol Biotechnol; 2017 Jun; 27(6):1150-1156. PubMed ID: 28372038 [TBL] [Abstract][Full Text] [Related]
23. Polar glycerolipids of Chlamydomonas moewusii. Arisz SA; van Himbergen JA; Musgrave A; van den Ende H; Munnik T Phytochemistry; 2000 Jan; 53(2):265-70. PubMed ID: 10680181 [TBL] [Abstract][Full Text] [Related]
24. Cellular and thylakoid-membrane glycolipids of Chlamydomonas reinhardtii 137+. Janero DR; Barrnett R J Lipid Res; 1981 Sep; 22(7):1119-25. PubMed ID: 7299292 [TBL] [Abstract][Full Text] [Related]
25. Cadmium exposure and phosphorus limitation increases metal content in the freshwater alga Chlamydomonas reinhardtii. Webster RE; Dean AP; Pittman JK Environ Sci Technol; 2011 Sep; 45(17):7489-96. PubMed ID: 21809879 [TBL] [Abstract][Full Text] [Related]
26. Use of the ptxD gene as a portable selectable marker for chloroplast transformation in Chlamydomonas reinhardtii. Sandoval-Vargas JM; Jiménez-Clemente LA; Macedo-Osorio KS; Oliver-Salvador MC; Fernández-Linares LC; Durán-Figueroa NV; Badillo-Corona JA Mol Biotechnol; 2019 Jun; 61(6):461-468. PubMed ID: 30997667 [TBL] [Abstract][Full Text] [Related]
27. Optimization Growth of Spirulina (Arthrospira) Platensis in Photobioreactor Under Varied Nitrogen Concentration for Maximized Biomass, Carotenoids and Lipid Contents. El Baky HHA; El Baroty GS; Mostafa EM Recent Pat Food Nutr Agric; 2020; 11(1):40-48. PubMed ID: 30588890 [TBL] [Abstract][Full Text] [Related]
28. Artificial miRNA inhibition of phosphoenolpyruvate carboxylase increases fatty acid production in a green microalga Wang C; Chen X; Li H; Wang J; Hu Z Biotechnol Biofuels; 2017; 10():91. PubMed ID: 28413446 [TBL] [Abstract][Full Text] [Related]
29. Fatty acid profiling of Chlamydomonas reinhardtii under nitrogen deprivation. James GO; Hocart CH; Hillier W; Chen H; Kordbacheh F; Price GD; Djordjevic MA Bioresour Technol; 2011 Feb; 102(3):3343-51. PubMed ID: 21146403 [TBL] [Abstract][Full Text] [Related]
30. A front-end desaturase from Chlamydomonas reinhardtii produces pinolenic and coniferonic acids by omega13 desaturation in methylotrophic yeast and tobacco. Kajikawa M; Yamato KT; Kohzu Y; Shoji S; Matsui K; Tanaka Y; Sakai Y; Fukuzawa H Plant Cell Physiol; 2006 Jan; 47(1):64-73. PubMed ID: 16267098 [TBL] [Abstract][Full Text] [Related]
31. Isolation and characterization of an ether-linked homoserine lipid from the thylakoid membrane of Chlamydomonas reinhardtii 137+. Janero DR; Barrnett R J Lipid Res; 1982 Feb; 23(2):307-16. PubMed ID: 7077145 [TBL] [Abstract][Full Text] [Related]
32. Chloroplast Damage Induced by the Inhibition of Fatty Acid Synthesis Triggers Autophagy in Chlamydomonas. Heredia-Martínez LG; Andrés-Garrido A; Martínez-Force E; Pérez-Pérez ME; Crespo JL Plant Physiol; 2018 Nov; 178(3):1112-1129. PubMed ID: 30181343 [TBL] [Abstract][Full Text] [Related]
33. Phosphate and sulfur limitation responses in the chloroplast of Chlamydomonas reinhardtii. Irihimovitch V; Yehudai-Resheff S FEMS Microbiol Lett; 2008 Jun; 283(1):1-8. PubMed ID: 18410347 [TBL] [Abstract][Full Text] [Related]
35. Nutritional influences on biomass behaviour and metabolic products by Chlamydomonas reinhardtii. de M Sousa L; de S Ferreira J; Cardoso VL; Batista FRX World J Microbiol Biotechnol; 2022 Apr; 38(6):96. PubMed ID: 35460020 [TBL] [Abstract][Full Text] [Related]
36. High-Level Accumulation of Triacylglycerol and Starch in Photoautotrophically Grown Chlamydomonas debaryana NIES-2212. Toyoshima M; Sato N Plant Cell Physiol; 2015 Dec; 56(12):2447-56. PubMed ID: 26542110 [TBL] [Abstract][Full Text] [Related]
37. Effects of benzophenone-3 on the green alga Chlamydomonas reinhardtii and the cyanobacterium Microcystis aeruginosa. Mao F; He Y; Kushmaro A; Gin KY Aquat Toxicol; 2017 Dec; 193():1-8. PubMed ID: 28992446 [TBL] [Abstract][Full Text] [Related]
38. Long-chain acyl-CoA synthetases activate fatty acids for lipid synthesis, remodeling and energy production in Chlamydomonas. Bai F; Yu L; Shi J; Li-Beisson Y; Liu J New Phytol; 2022 Jan; 233(2):823-837. PubMed ID: 34665469 [TBL] [Abstract][Full Text] [Related]
39. Modeling and optimization of photosynthetic hydrogen gas production by green alga Chlamydomonas reinhardtii in sulfur-deprived circumstance. Jo JH; Lee DS; Park JM Biotechnol Prog; 2006; 22(2):431-7. PubMed ID: 16599558 [TBL] [Abstract][Full Text] [Related]
40. Elemental and macromolecular plasticity of Chlamydomonas reinhardtii (Chlorophyta) in response to resource limitation and growth rate. Isanta-Navarro J; Peoples LM; Bras B; Church MJ; Elser JJ J Phycol; 2024 Apr; 60(2):418-431. PubMed ID: 38196398 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]