BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 31902650)

  • 1. Luciferase-based HMG-CoA reductase degradation assay for activity and selectivity profiling of oxy(lano)sterols.
    Sagimori I; Yoshioka H; Hashimoto Y; Ohgane K
    Bioorg Med Chem; 2020 Feb; 28(3):115298. PubMed ID: 31902650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endogenous sterol intermediates of the mevalonate pathway regulate HMGCR degradation and SREBP-2 processing.
    Chen L; Ma MY; Sun M; Jiang LY; Zhao XT; Fang XX; Man Lam S; Shui GH; Luo J; Shi XJ; Song BL
    J Lipid Res; 2019 Oct; 60(10):1765-1775. PubMed ID: 31455613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bisphosphonate esters interact with HMG-CoA reductase membrane domain to induce its degradation.
    Toyota Y; Yoshioka H; Sagimori I; Hashimoto Y; Ohgane K
    Bioorg Med Chem; 2020 Jul; 28(14):115576. PubMed ID: 32616181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of 3-hydroxy-3-methylglutaryl-CoA reductase by 15 alpha-fluorolanost-7-en-3 beta-ol. A mechanism-based inhibitor of cholesterol biosynthesis.
    Trzaskos JM; Magolda RL; Favata MF; Fischer RT; Johnson PR; Chen HW; Ko SS; Leonard DA; Gaylor JL
    J Biol Chem; 1993 Oct; 268(30):22591-9. PubMed ID: 7693673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct binding to sterols accelerates endoplasmic reticulum-associated degradation of HMG CoA reductase.
    Faulkner RA; Yang Y; Tsien J; Qin T; DeBose-Boyd RA
    Proc Natl Acad Sci U S A; 2024 Feb; 121(7):e2318822121. PubMed ID: 38319967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulated degradation of HMG CoA reductase requires conformational changes in sterol-sensing domain.
    Chen H; Qi X; Faulkner RA; Schumacher MM; Donnelly LM; DeBose-Boyd RA; Li X
    Nat Commun; 2022 Jul; 13(1):4273. PubMed ID: 35879350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insig-mediated degradation of HMG CoA reductase stimulated by lanosterol, an intermediate in the synthesis of cholesterol.
    Song BL; Javitt NB; DeBose-Boyd RA
    Cell Metab; 2005 Mar; 1(3):179-89. PubMed ID: 16054061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling cholesterol synthesis beyond 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR).
    Sharpe LJ; Brown AJ
    J Biol Chem; 2013 Jun; 288(26):18707-15. PubMed ID: 23696639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accelerated degradation of HMG CoA reductase mediated by binding of insig-1 to its sterol-sensing domain.
    Sever N; Yang T; Brown MS; Goldstein JL; DeBose-Boyd RA
    Mol Cell; 2003 Jan; 11(1):25-33. PubMed ID: 12535518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid proteasomal elimination of 3-hydroxy-3-methylglutaryl-CoA reductase by interferon-γ in primary macrophages requires endogenous 25-hydroxycholesterol synthesis.
    Lu H; Talbot S; Robertson KA; Watterson S; Forster T; Roy D; Ghazal P
    Steroids; 2015 Jul; 99(Pt B):219-29. PubMed ID: 25759117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Post-transcriptional regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase by mevalonate.
    Straka MS; Panini SR
    Arch Biochem Biophys; 1995 Feb; 317(1):235-43. PubMed ID: 7872789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An actionable sterol-regulated feedback loop modulates statin sensitivity in prostate cancer.
    Longo J; Mullen PJ; Yu R; van Leeuwen JE; Masoomian M; Woon DTS; Wang Y; Chen EX; Hamilton RJ; Sweet JM; van der Kwast TH; Fleshner NE; Penn LZ
    Mol Metab; 2019 Jul; 25():119-130. PubMed ID: 31023626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Haploid Mammalian Genetic Screen Identifies UBXD8 as a Key Determinant of HMGCR Degradation and Cholesterol Biosynthesis.
    Loregger A; Raaben M; Tan J; Scheij S; Moeton M; van den Berg M; Gelberg-Etel H; Stickel E; Roitelman J; Brummelkamp T; Zelcer N
    Arterioscler Thromb Vasc Biol; 2017 Nov; 37(11):2064-2074. PubMed ID: 28882874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hypoxia stimulates degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase through accumulation of lanosterol and hypoxia-inducible factor-mediated induction of insigs.
    Nguyen AD; McDonald JG; Bruick RK; DeBose-Boyd RA
    J Biol Chem; 2007 Sep; 282(37):27436-27446. PubMed ID: 17635920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insulin-induced gene protein (INSIG)-dependent sterol regulation of Hmg2 endoplasmic reticulum-associated degradation (ERAD) in yeast.
    Theesfeld CL; Hampton RY
    J Biol Chem; 2013 Mar; 288(12):8519-8530. PubMed ID: 23306196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of cytochrome P450 in the regulation of cholesterol biosynthesis.
    Gibbons GF
    Lipids; 2002 Dec; 37(12):1163-70. PubMed ID: 12617470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Are side-chain oxidized oxysterols regulators also in vivo?
    Björkhem I
    J Lipid Res; 2009 Apr; 50 Suppl(Suppl):S213-8. PubMed ID: 18952574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The sterol-responsive RNF145 E3 ubiquitin ligase mediates the degradation of HMG-CoA reductase together with gp78 and Hrd1.
    Menzies SA; Volkmar N; van den Boomen DJ; Timms RT; Dickson AS; Nathan JA; Lehner PJ
    Elife; 2018 Dec; 7():. PubMed ID: 30543180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase by azole antimycotics requires lanosterol demethylation, but not 24,25-epoxylanosterol formation.
    Favata MF; Trzaskos JM; Chen HW; Fischer RT; Greenberg RS
    J Biol Chem; 1987 Sep; 262(25):12254-60. PubMed ID: 3624255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Syntheses of ring C oxysterols: inhibitors of sterol biosynthesis.
    Parish EJ; Luo C; Webb T; Gorden JD
    Lipids; 2007 Feb; 42(1):35-40. PubMed ID: 17393208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.