These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 31902706)

  • 1. Pathogenic Pathways in Early-Onset Autosomal Recessive Parkinson's Disease Discovered Using Isogenic Human Dopaminergic Neurons.
    Ahfeldt T; Ordureau A; Bell C; Sarrafha L; Sun C; Piccinotti S; Grass T; Parfitt GM; Paulo JA; Yanagawa F; Uozumi T; Kiyota Y; Harper JW; Rubin LL
    Stem Cell Reports; 2020 Jan; 14(1):75-90. PubMed ID: 31902706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Etiology and pathogenesis of Parkinson's disease: from mitochondrial dysfunctions to familial Parkinson's disease].
    Hattori N
    Rinsho Shinkeigaku; 2004; 44(4-5):241-62. PubMed ID: 15287506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pluripotent Stem Cell Derived Neurons as In Vitro Models for Studying Autosomal Recessive Parkinson's Disease (ARPD): PLA2G6 and Other Gene Loci.
    Gopurappilly R
    Adv Exp Med Biol; 2021; 1347():115-133. PubMed ID: 33990932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trumping neurodegeneration: Targeting common pathways regulated by autosomal recessive Parkinson's disease genes.
    Scott L; Dawson VL; Dawson TM
    Exp Neurol; 2017 Dec; 298(Pt B):191-201. PubMed ID: 28445716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of bioactive metabolites in human iPSC-derived dopaminergic neurons with PARK2 mutation: Altered mitochondrial and energy metabolism.
    Okarmus J; Havelund JF; Ryding M; Schmidt SI; Bogetofte H; Heon-Roberts R; Wade-Martins R; Cowley SA; Ryan BJ; Færgeman NJ; Hyttel P; Meyer M
    Stem Cell Reports; 2021 Jun; 16(6):1510-1526. PubMed ID: 34048689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parkin Maintains Robust Pacemaking in Human Induced Pluripotent Stem Cell-Derived A9 Dopaminergic Neurons.
    Pu J; Lin L; Jiang H; Hu Z; Li H; Yan Z; Zhang B; Feng J
    Mov Disord; 2023 Jul; 38(7):1273-1281. PubMed ID: 37166002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lack of Parkin Anticipates the Phenotype and Affects Mitochondrial Morphology and mtDNA Levels in a Mouse Model of Parkinson's Disease.
    Pinto M; Nissanka N; Moraes CT
    J Neurosci; 2018 Jan; 38(4):1042-1053. PubMed ID: 29222404
    [No Abstract]   [Full Text] [Related]  

  • 8. Quantitative expression proteomics and phosphoproteomics profile of brain from PINK1 knockout mice: insights into mechanisms of familial Parkinson's disease.
    Triplett JC; Zhang Z; Sultana R; Cai J; Klein JB; Büeler H; Butterfield DA
    J Neurochem; 2015 Jun; 133(5):750-65. PubMed ID: 25626353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parkin controls dopamine utilization in human midbrain dopaminergic neurons derived from induced pluripotent stem cells.
    Jiang H; Ren Y; Yuen EY; Zhong P; Ghaedi M; Hu Z; Azabdaftari G; Nakaso K; Yan Z; Feng J
    Nat Commun; 2012 Feb; 3():668. PubMed ID: 22314364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson's disease.
    Büeler H
    Exp Neurol; 2009 Aug; 218(2):235-46. PubMed ID: 19303005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perturbations in RhoA signalling cause altered migration and impaired neuritogenesis in human iPSC-derived neural cells with PARK2 mutation.
    Bogetofte H; Jensen P; Okarmus J; Schmidt SI; Agger M; Ryding M; Nørregaard P; Fenger C; Zeng X; Graakjær J; Ryan BJ; Wade-Martins R; Larsen MR; Meyer M
    Neurobiol Dis; 2019 Dec; 132():104581. PubMed ID: 31445161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial alterations by PARKIN in dopaminergic neurons using PARK2 patient-specific and PARK2 knockout isogenic iPSC lines.
    Shaltouki A; Sivapatham R; Pei Y; Gerencser AA; Momčilović O; Rao MS; Zeng X
    Stem Cell Reports; 2015 May; 4(5):847-59. PubMed ID: 25843045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling Parkinson's Disease Using Patient-specific Induced Pluripotent Stem Cells.
    Li H; Jiang H; Zhang B; Feng J
    J Parkinsons Dis; 2018; 8(4):479-493. PubMed ID: 30149462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parkinson's Disease-Associated Changes in the Expression of Neurotrophic Factors and their Receptors upon Neuronal Differentiation of Human Induced Pluripotent Stem Cells.
    Novosadova EV; Nenasheva VV; Makarova IV; Dolotov OV; Inozemtseva LS; Arsenyeva EL; Chernyshenko SV; Sultanov RI; Illarioshkin SN; Grivennikov IA; Tarantul VZ
    J Mol Neurosci; 2020 Apr; 70(4):514-521. PubMed ID: 31820346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Axonal pathology in hPSC-based models of Parkinson's disease results from loss of Nrf2 transcriptional activity at the Map1b gene locus.
    Czaniecki C; Ryan T; Stykel MG; Drolet J; Heide J; Hallam R; Wood S; Coackley C; Sherriff K; Bailey CDC; Ryan SD
    Proc Natl Acad Sci U S A; 2019 Jul; 116(28):14280-14289. PubMed ID: 31235589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human Induced Pluripotent Stem Cell Phenotyping and Preclinical Modeling of Familial Parkinson's Disease.
    Kim J; Daadi EW; Oh T; Daadi ES; Daadi MM
    Genes (Basel); 2022 Oct; 13(11):. PubMed ID: 36360174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synaptic, Mitochondrial, and Lysosomal Dysfunction in Parkinson's Disease.
    Nguyen M; Wong YC; Ysselstein D; Severino A; Krainc D
    Trends Neurosci; 2019 Feb; 42(2):140-149. PubMed ID: 30509690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impairment of proteasome and anti-oxidative pathways in the induced pluripotent stem cell model for sporadic Parkinson's disease.
    Chang KH; Lee-Chen GJ; Wu YR; Chen YJ; Lin JL; Li M; Chen IC; Lo YS; Wu HC; Chen CM
    Parkinsonism Relat Disord; 2016 Mar; 24():81-8. PubMed ID: 26797011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protection against dopaminergic neurodegeneration in Parkinson's disease-model animals by a modulator of the oxidized form of DJ-1, a wild-type of familial Parkinson's disease-linked PARK7.
    Inden M; Kitamura Y; Takahashi K; Takata K; Ito N; Niwa R; Funayama R; Nishimura K; Taniguchi T; Honda T; Taira T; Ariga H
    J Pharmacol Sci; 2011; 117(3):189-203. PubMed ID: 22041943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SUMO-regulated mitochondrial function in Parkinson's disease.
    Guerra de Souza AC; Prediger RD; Cimarosti H
    J Neurochem; 2016 Jun; 137(5):673-86. PubMed ID: 26932327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.