These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 31902770)

  • 1. PUMAH: Pan-Tilt Ultrasound Mid-Air Haptics for Larger Interaction Workspace in Virtual Reality.
    Howard T; Marchal M; Lecuyer A; Pacchierotti C
    IEEE Trans Haptics; 2020; 13(1):38-44. PubMed ID: 31902770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Can Wearable Haptic Devices Foster the Embodiment of Virtual Limbs?
    Frohner J; Salvietti G; Beckerle P; Prattichizzo D
    IEEE Trans Haptics; 2019; 12(3):339-349. PubMed ID: 30582554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Path Routing Optimization for STM Ultrasound Rendering.
    Barreiro H; Sinclair S; Otaduy MA
    IEEE Trans Haptics; 2020; 13(1):45-51. PubMed ID: 32092013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SPH Fluid Tactile Rendering for Ultrasonic Mid-Air Haptics.
    Jang J; Park J
    IEEE Trans Haptics; 2020; 13(1):116-122. PubMed ID: 31944991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Altering the Stiffness, Friction, and Shape Perception of Tangible Objects in Virtual Reality Using Wearable Haptics.
    Salazar SV; Pacchierotti C; de Tinguy X; Maciel A; Marchal M
    IEEE Trans Haptics; 2020; 13(1):167-174. PubMed ID: 31976907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FW-Touch: A Finger Wearable Haptic Interface With an MR Foam Actuator for Displaying Surface Material Properties on a Touch Screen.
    Chen D; Song A; Tian L; Fu L; Zeng H
    IEEE Trans Haptics; 2019; 12(3):281-294. PubMed ID: 31180900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of Wearable Haptic Systems for the Fingers in Augmented Reality Applications.
    Maisto M; Pacchierotti C; Chinello F; Salvietti G; De Luca A; Prattichizzo D
    IEEE Trans Haptics; 2017; 10(4):511-522. PubMed ID: 28391207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soft Wearable Skin-Stretch Device for Haptic Feedback Using Twisted and Coiled Polymer Actuators.
    Chossat JB; Chen DKY; Park YL; Shull PB
    IEEE Trans Haptics; 2019; 12(4):521-532. PubMed ID: 31562105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pseudo-haptics and self-haptics for freehand mid-air text entry in VR.
    Kim W; Xiong S
    Appl Ergon; 2022 Oct; 104():103819. PubMed ID: 35687993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ascending and Descending in Virtual Reality: Simple and Safe System Using Passive Haptics.
    Nagao R; Matsumoto K; Narumi T; Tanikawa T; Hirose M
    IEEE Trans Vis Comput Graph; 2018 Apr; 24(4):1584-1593. PubMed ID: 29543176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mid-Air Tactile Stimulation for Pain Distraction.
    Karafotias G; Korres G; Teranishi A; Park W; Eid M; Karafotias G; Korres G; Teranishi A; Wanjoo Park ; Eid M; Teranishi A; Korres G; Park W; Karafotias G; Eid M
    IEEE Trans Haptics; 2018; 11(2):185-191. PubMed ID: 29911977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reducing Amplitude Fluctuation by Gradual Phase Shift in Midair Ultrasound Haptics.
    Suzuki S; Fujiwara M; Makino Y; Shinoda H
    IEEE Trans Haptics; 2020; 13(1):87-93. PubMed ID: 31944989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tactile Perceptual Thresholds of Electrovibration in VR.
    Zhao L; Liu Y; Song W
    IEEE Trans Vis Comput Graph; 2021 May; 27(5):2618-2626. PubMed ID: 33750706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feel the noise: Mid-air ultrasound haptics as a novel human-vehicle interaction paradigm.
    Large DR; Harrington K; Burnett G; Georgiou O
    Appl Ergon; 2019 Nov; 81():102909. PubMed ID: 31422270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MH-Pen: A Pen-Type Multi-Mode Haptic Interface for Touch Screens Interaction.
    Chen D; Song A; Tian L; Yu Y; Zhu L
    IEEE Trans Haptics; 2018; 11(4):555-567. PubMed ID: 29993931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-Sensory Stimuli Improve Distinguishability of Cutaneous Haptic Cues.
    Sullivan JL; Dunkelberger N; Bradley J; Young J; Israr A; Lau F; Klumb K; Abnousi F; O'Malley MK
    IEEE Trans Haptics; 2020; 13(2):286-297. PubMed ID: 31217130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prototype tactile feedback system for examination by skin touch.
    Lee O; Lee K; Oh C; Kim K; Kim M
    Skin Res Technol; 2014 Aug; 20(3):307-14. PubMed ID: 24267404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Review of Surface Haptics: Enabling Tactile Effects on Touch Surfaces.
    Basdogan C; Giraud F; Levesque V; Choi S
    IEEE Trans Haptics; 2020; 13(3):450-470. PubMed ID: 32340960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AR Feels "Softer" than VR: Haptic Perception of Stiffness in Augmented versus Virtual Reality.
    Gaffary Y; Le Gouis B; Marchal M; Argelaguet F; Arnaldi B; Lecuyer A
    IEEE Trans Vis Comput Graph; 2017 Nov; 23(11):2372-2377. PubMed ID: 28809699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HAPmini: 2D haptic feedback generation using single actuator device.
    Kim H; Hyun KH
    PLoS One; 2023; 18(4):e0285002. PubMed ID: 37099507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.