These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 31902784)
1. Semi-Supervised Learning for Semantic Segmentation of Emphysema With Partial Annotations. Peng L; Lin L; Hu H; Zhang Y; Li H; Iwamoto Y; Han XH; Chen YW IEEE J Biomed Health Inform; 2020 Aug; 24(8):2327-2336. PubMed ID: 31902784 [TBL] [Abstract][Full Text] [Related]
2. PyMIC: A deep learning toolkit for annotation-efficient medical image segmentation. Wang G; Luo X; Gu R; Yang S; Qu Y; Zhai S; Zhao Q; Li K; Zhang S Comput Methods Programs Biomed; 2023 Apr; 231():107398. PubMed ID: 36773591 [TBL] [Abstract][Full Text] [Related]
3. Uncertainty-guided cross learning via CNN and transformer for semi-supervised honeycomb lung lesion segmentation. Zi-An Z; Xiu-Fang F; Xiao-Qiang R; Yun-Yun D Phys Med Biol; 2023 Dec; 68(24):. PubMed ID: 37988756 [No Abstract] [Full Text] [Related]
4. An Optimized Superpixel Clustering Approach for High-Resolution Chest CT Image Segmentation. Pinheiro da Rosa R; Cordeiro d'Ornellas M Stud Health Technol Inform; 2015; 216():1045. PubMed ID: 26262344 [TBL] [Abstract][Full Text] [Related]
5. Segmentation only uses sparse annotations: Unified weakly and semi-supervised learning in medical images. Gao F; Hu M; Zhong ME; Feng S; Tian X; Meng X; Ni-Jia-Ti MY; Huang Z; Lv M; Song T; Zhang X; Zou X; Wu X Med Image Anal; 2022 Aug; 80():102515. PubMed ID: 35780593 [TBL] [Abstract][Full Text] [Related]
6. Semi-supervised deep learning of brain tissue segmentation. Ito R; Nakae K; Hata J; Okano H; Ishii S Neural Netw; 2019 Aug; 116():25-34. PubMed ID: 30986724 [TBL] [Abstract][Full Text] [Related]
7. An Effective Semi-Supervised Approach for Liver CT Image Segmentation. Han K; Liu L; Song Y; Liu Y; Qiu C; Tang Y; Teng Q; Liu Z IEEE J Biomed Health Inform; 2022 Aug; 26(8):3999-4007. PubMed ID: 35420991 [TBL] [Abstract][Full Text] [Related]
8. Weakly-Supervised Segmentation-Based Quantitative Characterization of Pulmonary Cavity Lesions in CT Scans. Xing W; Yang Y; Zhou Y; Jiang T; Li Y; Song Y; Hou D; Ta D IEEE J Transl Eng Health Med; 2024; 12():457-467. PubMed ID: 38899144 [TBL] [Abstract][Full Text] [Related]
9. A texton-based approach for the classification of lung parenchyma in CT images. Gangeh MJ; Sørensen L; Shaker SB; Kamel MS; de Bruijne M; Loog M Med Image Comput Comput Assist Interv; 2010; 13(Pt 3):595-602. PubMed ID: 20879449 [TBL] [Abstract][Full Text] [Related]
10. Active deep learning from a noisy teacher for semi-supervised 3D image segmentation: Application to COVID-19 pneumonia infection in CT. Hussain MA; Mirikharaji Z; Momeny M; Marhamati M; Neshat AA; Garbi R; Hamarneh G Comput Med Imaging Graph; 2022 Dec; 102():102127. PubMed ID: 36257092 [TBL] [Abstract][Full Text] [Related]
11. Weakly Supervised Deep Nuclei Segmentation Using Partial Points Annotation in Histopathology Images. Qu H; Wu P; Huang Q; Yi J; Yan Z; Li K; Riedlinger GM; De S; Zhang S; Metaxas DN IEEE Trans Med Imaging; 2020 Nov; 39(11):3655-3666. PubMed ID: 32746112 [TBL] [Abstract][Full Text] [Related]
12. Classification of Volumetric Images Using Multi-Instance Learning and Extreme Value Theorem. Tennakoon R; Bortsova G; Orting S; Gostar AK; Wille MMW; Saghir Z; Hoseinnezhad R; de Bruijne M; Bab-Hadiashar A IEEE Trans Med Imaging; 2020 Apr; 39(4):854-865. PubMed ID: 31425069 [TBL] [Abstract][Full Text] [Related]
13. Semi-Supervised CT Lesion Segmentation Using Uncertainty-Based Data Pairing and SwapMix. Qiao P; Li H; Song G; Han H; Gao Z; Tian Y; Liang Y; Li X; Zhou SK; Chen J IEEE Trans Med Imaging; 2023 May; 42(5):1546-1562. PubMed ID: 37015649 [TBL] [Abstract][Full Text] [Related]
14. Mutual consistency learning for semi-supervised medical image segmentation. Wu Y; Ge Z; Zhang D; Xu M; Zhang L; Xia Y; Cai J Med Image Anal; 2022 Oct; 81():102530. PubMed ID: 35839737 [TBL] [Abstract][Full Text] [Related]
15. Intra- and interoperator variability of lobar pulmonary volumes and emphysema scores in patients with chronic obstructive pulmonary disease and emphysema: comparison of manual and semi-automated segmentation techniques. Molinari F; Pirronti T; Sverzellati N; Diciotti S; Amato M; Paolantonio G; Gentile L; Parapatt GK; D'Argento F; Kuhnigk JM Diagn Interv Radiol; 2013; 19(4):279-85. PubMed ID: 23419362 [TBL] [Abstract][Full Text] [Related]
16. Automated prediction of emphysema visual score using homology-based quantification of low-attenuation lung region. Nishio M; Nakane K; Kubo T; Yakami M; Emoto Y; Nishio M; Togashi K PLoS One; 2017; 12(5):e0178217. PubMed ID: 28542398 [TBL] [Abstract][Full Text] [Related]
17. Active relearning for robust supervised training of emphysema patterns. Raghunath S; Rajagopalan S; Karwoski RA; Bartholmai BJ; Robb RA J Digit Imaging; 2014 Aug; 27(4):548-55. PubMed ID: 24771303 [TBL] [Abstract][Full Text] [Related]
18. Active contour regularized semi-supervised learning for COVID-19 CT infection segmentation with limited annotations. Ma J; Nie Z; Wang C; Dong G; Zhu Q; He J; Gui L; Yang X Phys Med Biol; 2020 Dec; 65(22):225034. PubMed ID: 33045699 [TBL] [Abstract][Full Text] [Related]
19. 'Squeeze & excite' guided few-shot segmentation of volumetric images. Guha Roy A; Siddiqui S; Pölsterl S; Navab N; Wachinger C Med Image Anal; 2020 Jan; 59():101587. PubMed ID: 31630012 [TBL] [Abstract][Full Text] [Related]
20. Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method. Zhou X; Takayama R; Wang S; Hara T; Fujita H Med Phys; 2017 Oct; 44(10):5221-5233. PubMed ID: 28730602 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]