BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 31902785)

  • 1. Real-Time Detection of Compensatory Patterns in Patients With Stroke to Reduce Compensation During Robotic Rehabilitation Therapy.
    Cai S; Li G; Su E; Wei X; Huang S; Ma K; Zheng H; Xie L
    IEEE J Biomed Health Inform; 2020 Sep; 24(9):2630-2638. PubMed ID: 31902785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detecting compensatory movements of stroke survivors using pressure distribution data and machine learning algorithms.
    Cai S; Li G; Zhang X; Huang S; Zheng H; Ma K; Xie L
    J Neuroeng Rehabil; 2019 Nov; 16(1):131. PubMed ID: 31684970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Online compensation detecting for real-time reduction of compensatory motions during reaching: a pilot study with stroke survivors.
    Cai S; Wei X; Su E; Wu W; Zheng H; Xie L
    J Neuroeng Rehabil; 2020 Apr; 17(1):58. PubMed ID: 32345335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic Detection of Compensation During Robotic Stroke Rehabilitation Therapy.
    Zhi YX; Lukasik M; Li MH; Dolatabadi E; Wang RH; Taati B
    IEEE J Transl Eng Health Med; 2018; 6():2100107. PubMed ID: 29404226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. sEMG-Based Trunk Compensation Detection in Rehabilitation Training.
    Ma K; Chen Y; Zhang X; Zheng H; Yu S; Cai S; Xie L
    Front Neurosci; 2019; 13():1250. PubMed ID: 31824250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reducing Trunk Compensation in Stroke Survivors: A Randomized Crossover Trial Comparing Visual and Force Feedback Modalities.
    Valdés BA; Schneider AN; Van der Loos HFM
    Arch Phys Med Rehabil; 2017 Oct; 98(10):1932-1940. PubMed ID: 28526482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biofeedback vs. game scores for reducing trunk compensation after stroke: a randomized crossover trial.
    Valdés BA; Van der Loos HFM
    Top Stroke Rehabil; 2018 Mar; 25(2):96-113. PubMed ID: 29078743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Online detection of compensatory strategies in human movement with supervised classification: a pilot study.
    Das N; Endo S; Patel S; Krewer C; Hirche S
    Front Neurorobot; 2023; 17():1155826. PubMed ID: 37520678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human arm weight compensation in rehabilitation robotics: efficacy of three distinct methods.
    Just F; Özen Ö; Tortora S; Klamroth-Marganska V; Riener R; Rauter G
    J Neuroeng Rehabil; 2020 Feb; 17(1):13. PubMed ID: 32024528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reaching exercise for chronic paretic upper extremity after stroke using a novel rehabilitation robot with arm-weight support and concomitant electrical stimulation and vibration: before-and-after feasibility trial.
    Amano Y; Noma T; Etoh S; Miyata R; Kawamura K; Shimodozono M
    Biomed Eng Online; 2020 May; 19(1):28. PubMed ID: 32375788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating the feasibility and acceptability of real-time visual feedback in reducing compensatory motions during self-administered stroke rehabilitation exercises: A pilot study with chronic stroke survivors.
    Lin S; Mann J; Mansfield A; Wang RH; Harris JE; Taati B
    J Rehabil Assist Technol Eng; 2019; 6():2055668319831631. PubMed ID: 31245031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reliability, validity and discriminant ability of the instrumental indices provided by a novel planar robotic device for upper limb rehabilitation.
    Germanotta M; Cruciani A; Pecchioli C; Loreti S; Spedicato A; Meotti M; Mosca R; Speranza G; Cecchi F; Giannarelli G; Padua L; Aprile I
    J Neuroeng Rehabil; 2018 May; 15(1):39. PubMed ID: 29769127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of Participation and Training Task Difficulty Applied to the Multi-Sensor Systems of Rehabilitation Robots.
    Yan H; Wang H; Vladareanu L; Lin M; Vladareanu V; Li Y
    Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31661870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bilateral robot therapy based on haptics and reinforcement learning: Feasibility study of a new concept for treatment of patients after stroke.
    Squeri V; Casadio M; Vergaro E; Giannoni P; Morasso P; Sanguineti V
    J Rehabil Med; 2009 Nov; 41(12):961-5. PubMed ID: 19841824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Haptic feedback system for postural adaptation during robotic rehabilitation of upper limb.
    Agarwal R; Hussain A; Skm V; Campolo D
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping upper-limb motor performance after stroke - a novel method with utility for individualized motor training.
    Rosenthal O; Wing AM; Wyatt JL; Punt D; Miall RC
    J Neuroeng Rehabil; 2017 Dec; 14(1):127. PubMed ID: 29208020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neurocognitive robot-assisted rehabilitation of hand function: a randomized control trial on motor recovery in subacute stroke.
    Ranzani R; Lambercy O; Metzger JC; Califfi A; Regazzi S; Dinacci D; Petrillo C; Rossi P; Conti FM; Gassert R
    J Neuroeng Rehabil; 2020 Aug; 17(1):115. PubMed ID: 32831097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effectiveness of Visual Feedback in Reducing Trunk Compensation During Arm Reaching for Home-Based Stroke Rehabilitation.
    Lee SH; Song WK
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of the effects and usability of two exoskeletal robots with and without robotic actuation for upper extremity rehabilitation among patients with stroke: a single-blinded randomised controlled pilot study.
    Park JH; Park G; Kim HY; Lee JY; Ham Y; Hwang D; Kwon S; Shin JH
    J Neuroeng Rehabil; 2020 Oct; 17(1):137. PubMed ID: 33076952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of the Intention to Grasp During Reaching in Stroke Using Inertial Sensing.
    van Ommeren AL; Sawaryn B; Prange-Lasonder GB; Buurke JH; Rietman JS; Veltink PH
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2128-2134. PubMed ID: 31545733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.