These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 31902936)

  • 1. Rapid On-Site Monitoring of Bacteria in Freshwater Environments Using a Portable Microfluidic Counting System.
    Yamaguchi N; Fujii Y
    Biol Pharm Bull; 2020; 43(1):87-92. PubMed ID: 31902936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid on-site monitoring of Legionella pneumophila in cooling tower water using a portable microfluidic system.
    Yamaguchi N; Tokunaga Y; Goto S; Fujii Y; Banno F; Edagawa A
    Sci Rep; 2017 Jun; 7(1):3092. PubMed ID: 28596545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid On-Site Detection and Quantification of Foodborne Pathogens Using Microfluidic Devices.
    Yamaguchi N
    Methods Mol Biol; 2019; 1918():57-66. PubMed ID: 30580399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid, semiautomated quantification of bacterial cells in freshwater by using a microfluidic device for on-chip staining and counting.
    Yamaguchi N; Torii M; Uebayashi Y; Nasu M
    Appl Environ Microbiol; 2011 Feb; 77(4):1536-9. PubMed ID: 21169431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microchip-based terminal restriction fragment length polymorphism for on-site analysis of bacterial communities in freshwater.
    Yamaguchi N; Matsukawa S; Shintome Y; Ichijo T; Nasu M
    Biol Pharm Bull; 2013; 36(8):1305-9. PubMed ID: 23902975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated sample processing and counting microfluidic device for microplastics analysis.
    Zhang M; Wang X; Zhang Y; Fan Y
    Anal Chim Acta; 2023 Jun; 1261():341237. PubMed ID: 37147054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid direct methods for enumeration of specific, active bacteria in water and biofilms.
    McFeters GA; Pyle BH; Lisle JT; Broadaway SC
    J Appl Microbiol; 1998 Dec; 85 Suppl 1():193S-200S. PubMed ID: 21182709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An automated 3D-printed smartphone platform integrated with optoelectrowetting (OEW) microfluidic chip for on-site monitoring of viable algae in water.
    Lee S; Thio SK; Park SY; Bae S
    Harmful Algae; 2019 Sep; 88():101638. PubMed ID: 31582154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid and simple quantification of bacterial cells by using a microfluidic device.
    Sakamoto C; Yamaguchi N; Nasu M
    Appl Environ Microbiol; 2005 Feb; 71(2):1117-21. PubMed ID: 15691978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 16S ribosomal RNA gene-based phylogenetic analysis of abundant bacteria in river, canal and potable water in Bangkok, Thailand.
    Yamaguchi N; Nishiguchi T; Utrarachkij F; Suthienkul O; Nasu M
    Biol Pharm Bull; 2013; 36(5):872-6. PubMed ID: 23649345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid direct methods for enumeration of specific, active bacteria in water and biofilms.
    McFeters GA; Pyle BH; Lisle JT; Broadaway SC
    Symp Ser Soc Appl Microbiol; 1999; 85(28):193S-200S. PubMed ID: 11543584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid detection of Escherichia coli in water using a hand-held fluorescence detector.
    Wildeboer D; Amirat L; Price RG; Abuknesha RA
    Water Res; 2010 Apr; 44(8):2621-8. PubMed ID: 20153013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The River Ruhr - an urban river under particular interest for recreational use and as a raw water source for drinking water: The collaborative research project "Safe Ruhr" - microbiological aspects.
    Strathmann M; Horstkott M; Koch C; Gayer U; Wingender J
    Int J Hyg Environ Health; 2016 Oct; 219(7 Pt B):643-661. PubMed ID: 27495908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of different model approaches for a hygiene early warning system at the lower Ruhr River, Germany.
    Mälzer HJ; Aus der Beek T; Müller S; Gebhardt J
    Int J Hyg Environ Health; 2016 Oct; 219(7 Pt B):671-680. PubMed ID: 26163780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid Concentration and Detection of Bacteria in Milk Using a Microfluidic Surface Acoustic Wave Activated Nanosieve.
    Ang B; Jirapanjawat T; Tay KP; Ashtiani D; Greening C; Tuck KL; Neild A; Cadarso VJ
    ACS Sens; 2024 Jun; 9(6):3105-3114. PubMed ID: 38753893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A microfluidic device for bacteria detection in aqueous samples.
    Jha AK; Tripathi A; Bose A
    Environ Technol; 2011 Oct; 32(13-14):1661-7. PubMed ID: 22329157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simple and Precise Counting of Viable Bacteria by Resazurin-Amplified Picoarray Detection.
    Hsieh K; Zec HC; Chen L; Kaushik AM; Mach KE; Liao JC; Wang TH
    Anal Chem; 2018 Aug; 90(15):9449-9456. PubMed ID: 29969556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow-cytometric total bacterial cell counts as a descriptive microbiological parameter for drinking water treatment processes.
    Hammes F; Berney M; Wang Y; Vital M; Köster O; Egli T
    Water Res; 2008 Jan; 42(1-2):269-77. PubMed ID: 17659762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid and sensitive detection of viable bacteria in contaminated platelet concentrates using a newly developed bioimaging system.
    Motoyama Y; Yamaguchi N; Matsumoto M; Kagami N; Tani Y; Satake M; Nasu M
    Transfusion; 2008 Nov; 48(11):2364-9. PubMed ID: 18680549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of flow cytometry to monitor assimilable organic carbon (AOC) and microbial community changes in water.
    Elhadidy AM; Van Dyke MI; Peldszus S; Huck PM
    J Microbiol Methods; 2016 Nov; 130():154-163. PubMed ID: 27638413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.