BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

432 related articles for article (PubMed ID: 31903132)

  • 1. Micro/nano-bubble-assisted ultrasound to enhance the EPR effect and potential theranostic applications.
    Duan L; Yang L; Jin J; Yang F; Liu D; Hu K; Wang Q; Yue Y; Gu N
    Theranostics; 2020; 10(2):462-483. PubMed ID: 31903132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy.
    Rapoport N; Gao Z; Kennedy A
    J Natl Cancer Inst; 2007 Jul; 99(14):1095-106. PubMed ID: 17623798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasound Contrast Agents and Delivery Systems in Cancer Detection and Therapy.
    de Leon A; Perera R; Nittayacharn P; Cooley M; Jung O; Exner AA
    Adv Cancer Res; 2018; 139():57-84. PubMed ID: 29941107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The EPR effect and beyond: Strategies to improve tumor targeting and cancer nanomedicine treatment efficacy.
    Shi Y; van der Meel R; Chen X; Lammers T
    Theranostics; 2020; 10(17):7921-7924. PubMed ID: 32685029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterizing EPR-mediated passive drug targeting using contrast-enhanced functional ultrasound imaging.
    Theek B; Gremse F; Kunjachan S; Fokong S; Pola R; Pechar M; Deckers R; Storm G; Ehling J; Kiessling F; Lammers T
    J Control Release; 2014 May; 182():83-9. PubMed ID: 24631862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine?
    Danhier F
    J Control Release; 2016 Dec; 244(Pt A):108-121. PubMed ID: 27871992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theranostic nanobubbles towards smart nanomedicines.
    Zahiri M; Taghavi S; Abnous K; Taghdisi SM; Ramezani M; Alibolandi M
    J Control Release; 2021 Nov; 339():164-194. PubMed ID: 34592384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo.
    Maeda H; Nakamura H; Fang J
    Adv Drug Deliv Rev; 2013 Jan; 65(1):71-9. PubMed ID: 23088862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colloids, nanoparticles, and materials for imaging, delivery, ablation, and theranostics by focused ultrasound (FUS).
    Yildirim A; Blum NT; Goodwin AP
    Theranostics; 2019; 9(9):2572-2594. PubMed ID: 31131054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of next-generation macromolecular drugs based on the EPR effect: challenges and pitfalls.
    Nakamura H; Fang J; Maeda H
    Expert Opin Drug Deliv; 2015 Jan; 12(1):53-64. PubMed ID: 25425260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SPIO nanoparticle-stabilized PAA-F127 thermosensitive nanobubbles with MR/US dual-modality imaging and HIFU-triggered drug release for magnetically guided in vivo tumor therapy.
    Huang HY; Hu SH; Hung SY; Chiang CS; Liu HL; Chiu TL; Lai HY; Chen YY; Chen SY
    J Control Release; 2013 Nov; 172(1):118-127. PubMed ID: 23933522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strategies to improve the EPR effect: A mechanistic perspective and clinical translation.
    Ikeda-Imafuku M; Wang LL; Rodrigues D; Shaha S; Zhao Z; Mitragotri S
    J Control Release; 2022 May; 345():512-536. PubMed ID: 35337939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Concurrent visual and acoustic tracking of passive and active delivery of nanobubbles to tumors.
    Pellow C; Abenojar EC; Exner AA; Zheng G; Goertz DE
    Theranostics; 2020; 10(25):11690-11706. PubMed ID: 33052241
    [No Abstract]   [Full Text] [Related]  

  • 14. Sonoporation enhances liposome accumulation and penetration in tumors with low EPR.
    Theek B; Baues M; Ojha T; Möckel D; Veettil SK; Steitz J; van Bloois L; Storm G; Kiessling F; Lammers T
    J Control Release; 2016 Jun; 231():77-85. PubMed ID: 26878973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strategies to enhance drug delivery to solid tumors by harnessing the EPR effects and alternative targeting mechanisms.
    Zi Y; Yang K; He J; Wu Z; Liu J; Zhang W
    Adv Drug Deliv Rev; 2022 Sep; 188():114449. PubMed ID: 35835353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perspectives for Improving the Tumor Targeting of Nanomedicine via the EPR Effect in Clinical Tumors.
    Kim J; Cho H; Lim DK; Joo MK; Kim K
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploiting the dynamics of the EPR effect and strategies to improve the therapeutic effects of nanomedicines by using EPR effect enhancers.
    Fang J; Islam W; Maeda H
    Adv Drug Deliv Rev; 2020; 157():142-160. PubMed ID: 32553783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors affecting the dynamics and heterogeneity of the EPR effect: pathophysiological and pathoanatomic features, drug formulations and physicochemical factors.
    Islam R; Maeda H; Fang J
    Expert Opin Drug Deliv; 2022 Feb; 19(2):199-212. PubMed ID: 33430661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nano-lipospheres as acoustically active ultrasound contrast agents: evolving tumor imaging and therapy technique.
    Andrews LE; Chan MH; Liu RS
    Nanotechnology; 2019 May; 30(18):182001. PubMed ID: 30645984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current Approaches for Improving Intratumoral Accumulation and Distribution of Nanomedicines.
    Durymanov MO; Rosenkranz AA; Sobolev AS
    Theranostics; 2015; 5(9):1007-20. PubMed ID: 26155316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.