BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

704 related articles for article (PubMed ID: 31903148)

  • 1. A sericin/ graphene oxide composite scaffold as a biomimetic extracellular matrix for structural and functional repair of calvarial bone.
    Qi C; Deng Y; Xu L; Yang C; Zhu Y; Wang G; Wang Z; Wang L
    Theranostics; 2020; 10(2):741-756. PubMed ID: 31903148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photo-crosslinkable, injectable sericin hydrogel as 3D biomimetic extracellular matrix for minimally invasive repairing cartilage.
    Qi C; Liu J; Jin Y; Xu L; Wang G; Wang Z; Wang L
    Biomaterials; 2018 May; 163():89-104. PubMed ID: 29455069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Off-the-Shelf Biomimetic Graphene Oxide-Collagen Hybrid Scaffolds Wrapped with Osteoinductive Extracellular Matrix for the Repair of Cranial Defects in Rats.
    Liu S; Mou S; Zhou C; Guo L; Zhong A; Yang J; Yuan Q; Wang J; Sun J; Wang Z
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42948-42958. PubMed ID: 30421913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sericin/Nano-Hydroxyapatite Hydrogels Based on Graphene Oxide for Effective Bone Regeneration via Immunomodulation and Osteoinduction.
    Fu M; Li J; Liu M; Yang C; Wang Q; Wang H; Chen B; Fu Q; Sun G
    Int J Nanomedicine; 2023; 18():1875-1895. PubMed ID: 37051313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced bone regeneration of the silk fibroin electrospun scaffolds through the modification of the graphene oxide functionalized by BMP-2 peptide.
    Wu J; Zheng A; Liu Y; Jiao D; Zeng D; Wang X; Cao L; Jiang X
    Int J Nanomedicine; 2019; 14():733-751. PubMed ID: 30705589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene oxide-modified silk fibroin/nanohydroxyapatite scaffold loaded with urine-derived stem cells for immunomodulation and bone regeneration.
    Sun J; Li L; Xing F; Yang Y; Gong M; Liu G; Wu S; Luo R; Duan X; Liu M; Zou M; Xiang Z
    Stem Cell Res Ther; 2021 Dec; 12(1):591. PubMed ID: 34863288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D printed biocompatible graphene oxide, attapulgite, and collagen composite scaffolds for bone regeneration.
    Qin W; Li C; Liu C; Wu S; Liu J; Ma J; Chen W; Zhao H; Zhao X
    J Biomater Appl; 2022 May; 36(10):1838-1851. PubMed ID: 35196910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Composite Tissue Engineered Bone Material Consisting of Bone Mesenchymal Stem Cells, Bone Morphogenetic Protein 9 (BMP9) Gene Lentiviral Vector, and P3HB4HB Thermogel (BMSCs-LV-BMP9-P3HB4HB) Repairs Calvarial Skull Defects in Rats by Expression of Osteogenic Factors.
    Zhou C; Ye C; Zhao C; Liao J; Li Y; Chen H; Huang W
    Med Sci Monit; 2020 Sep; 26():e924666. PubMed ID: 32894745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mesenchymal stem cell-loaded thermosensitive hydroxypropyl chitin hydrogel combined with a three-dimensional-printed poly(ε-caprolactone) /nano-hydroxyapatite scaffold to repair bone defects via osteogenesis, angiogenesis and immunomodulation.
    Ji X; Yuan X; Ma L; Bi B; Zhu H; Lei Z; Liu W; Pu H; Jiang J; Jiang X; Zhang Y; Xiao J
    Theranostics; 2020; 10(2):725-740. PubMed ID: 31903147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of Bone Marrow-Derived Macrophages Combined with Bone Mesenchymal Stem Cells in Dual-Channel Three-Dimensional Bioprinting Scaffolds for Early Immune Regulation and Osteogenic Induction in Rat Calvarial Defects.
    Yu K; Huangfu H; Qin Q; Zhang Y; Gu X; Liu X; Zhang Y; Zhou Y
    ACS Appl Mater Interfaces; 2022 Oct; 14(41):47052-47065. PubMed ID: 36194837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mesoporous bioactive glass combined with graphene oxide scaffolds for bone repair.
    Wang W; Liu Y; Yang C; Qi X; Li S; Liu C; Li X
    Int J Biol Sci; 2019; 15(10):2156-2169. PubMed ID: 31592233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interleukin-4-loaded hydrogel scaffold regulates macrophages polarization to promote bone mesenchymal stem cells osteogenic differentiation via TGF-β1/Smad pathway for repair of bone defect.
    Zhang J; Shi H; Zhang N; Hu L; Jing W; Pan J
    Cell Prolif; 2020 Oct; 53(10):e12907. PubMed ID: 32951298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomimetic nucleation of hydroxyapatite crystals mediated by Antheraea pernyi silk sericin promotes osteogenic differentiation of human bone marrow derived mesenchymal stem cells.
    Yang M; Shuai Y; Zhang C; Chen Y; Zhu L; Mao C; OuYang H
    Biomacromolecules; 2014 Apr; 15(4):1185-93. PubMed ID: 24666022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering biomimetic periosteum with β-TCP scaffolds to promote bone formation in calvarial defects of rats.
    Zhang D; Gao P; Li Q; Li J; Li X; Liu X; Kang Y; Ren L
    Stem Cell Res Ther; 2017 Jun; 8(1):134. PubMed ID: 28583167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acceleration of chondrogenic differentiation of human mesenchymal stem cells by sustained growth factor release in 3D graphene oxide incorporated hydrogels.
    Shen H; Lin H; Sun AX; Song S; Wang B; Yang Y; Dai J; Tuan RS
    Acta Biomater; 2020 Mar; 105():44-55. PubMed ID: 32035282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Small molecules modified biomimetic gelatin/hydroxyapatite nanofibers constructing an ideal osteogenic microenvironment with significantly enhanced cranial bone formation.
    Li D; Zhang K; Shi C; Liu L; Yan G; Liu C; Zhou Y; Hu Y; Sun H; Yang B
    Int J Nanomedicine; 2018; 13():7167-7181. PubMed ID: 30464466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-strength double-network silk fibroin based hydrogel loaded with Icariin and BMSCs to inhibit osteoclasts and promote osteogenic differentiation to enhance bone repair.
    Liu H; Jiao Y; Forouzanfar T; Wu G; Guo R; Lin H
    Biomater Adv; 2024 Jun; 160():213856. PubMed ID: 38640877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A composite hydrogel loaded with the processed pyritum promotes bone repair via stimulate the osteogenic differentiation of BMSCs.
    Zhu X; Liu H; Mei C; Chen F; Guo M; Wei C; Wang D; Luo M; Hu X; Zhao Y; Hao F; Shi C; Li W
    Biomater Adv; 2024 Jun; 160():213848. PubMed ID: 38581745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Concentration-dependent cellular behavior and osteogenic differentiation effect induced in bone marrow mesenchymal stem cells treated with magnetic graphene oxide.
    He Y; Li Y; Chen G; Wei C; Zhang X; Zeng B; Yi C; Wang C; Yu D
    J Biomed Mater Res A; 2020 Jan; 108(1):50-60. PubMed ID: 31443121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomimetic and immunomodulatory baicalin-loaded graphene oxide-demineralized bone matrix scaffold for
    Guo B; Feng X; Wang Y; Wang X; He Y
    J Mater Chem B; 2021 Dec; 9(47):9720-9733. PubMed ID: 34787627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.