BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

502 related articles for article (PubMed ID: 31903157)

  • 1. High-resolution 3D visualization of nanomedicine distribution in tumors.
    Moss JI; Barjat H; Emmas SA; Strittmatter N; Maynard J; Goodwin RJA; Storm G; Lammers T; Puri S; Ashford MB; Barry ST
    Theranostics; 2020; 10(2):880-897. PubMed ID: 31903157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial and temporal mapping of heterogeneity in liposome uptake and microvascular distribution in an orthotopic tumor xenograft model.
    Ekdawi SN; Stewart JM; Dunne M; Stapleton S; Mitsakakis N; Dou YN; Jaffray DA; Allen C
    J Control Release; 2015 Jun; 207():101-11. PubMed ID: 25862513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-modal characterization of vasculature and nanoparticle accumulation in five tumor xenograft models.
    Sulheim E; Kim J; van Wamel A; Kim E; Snipstad S; Vidic I; Grimstad IH; Widerøe M; Torp SH; Lundgren S; Waxman DJ; de Lange Davies C
    J Control Release; 2018 Jun; 279():292-305. PubMed ID: 29684498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Companion Diagnostic
    Lee H; Gaddy D; Ventura M; Bernards N; de Souza R; Kirpotin D; Wickham T; Fitzgerald J; Zheng J; Hendriks BS
    Theranostics; 2018; 8(9):2300-2312. PubMed ID: 29721081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The EPR effect and beyond: Strategies to improve tumor targeting and cancer nanomedicine treatment efficacy.
    Shi Y; van der Meel R; Chen X; Lammers T
    Theranostics; 2020; 10(17):7921-7924. PubMed ID: 32685029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic contrast-enhanced micro-computed tomography correlates with 3-dimensional fluorescence ultramicroscopy in antiangiogenic therapy of breast cancer xenografts.
    Pöschinger T; Renner A; Eisa F; Dobosz M; Strobel S; Weber TG; Brauweiler R; Kalender WA; Scheuer W
    Invest Radiol; 2014 Jul; 49(7):445-56. PubMed ID: 24598441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining Nanomedicine and Immunotherapy.
    Shi Y; Lammers T
    Acc Chem Res; 2019 Jun; 52(6):1543-1554. PubMed ID: 31120725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Paclitaxel-loaded micelles enhance transvascular permeability and retention of nanomedicines in tumors.
    Danhier F; Danhier P; De Saedeleer CJ; Fruytier AC; Schleich N; des Rieux A; Sonveaux P; Gallez B; Préat V
    Int J Pharm; 2015 Feb; 479(2):399-407. PubMed ID: 25578367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle.
    Miller MA; Gadde S; Pfirschke C; Engblom C; Sprachman MM; Kohler RH; Yang KS; Laughney AM; Wojtkiewicz G; Kamaly N; Bhonagiri S; Pittet MJ; Farokhzad OC; Weissleder R
    Sci Transl Med; 2015 Nov; 7(314):314ra183. PubMed ID: 26582898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mathematical model of the enhanced permeability and retention effect for liposome transport in solid tumors.
    Stapleton S; Milosevic M; Allen C; Zheng J; Dunne M; Yeung I; Jaffray DA
    PLoS One; 2013; 8(12):e81157. PubMed ID: 24312530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noninvasive Molecular Imaging of the Enhanced Permeability and Retention Effect by
    Børresen B; Hansen AE; Fliedner FP; Henriksen JR; Elema DR; Brandt-Larsen M; Kristensen LK; Kristensen AT; Andresen TL; Kjær A
    Int J Nanomedicine; 2020; 15():8571-8581. PubMed ID: 33173294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intratumoral evaluation of 3D microvasculature and nanoparticle distribution using a gadolinium-dendron modified nano-liposomal contrast agent with magnetic resonance micro-imaging.
    Nitta N; Takakusagi Y; Kokuryo D; Shibata S; Tomita A; Higashi T; Aoki I; Harada M
    Nanomedicine; 2018 Jun; 14(4):1315-1324. PubMed ID: 29626524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative study of preclinical mouse models of high-grade glioma for nanomedicine research: the importance of reproducing blood-brain barrier heterogeneity.
    Brighi C; Reid L; Genovesi LA; Kojic M; Millar A; Bruce Z; White AL; Day BW; Rose S; Whittaker AK; Puttick S
    Theranostics; 2020; 10(14):6361-6371. PubMed ID: 32483457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using imaging modalities to predict nanoparticle distribution and treatment efficacy in solid tumors: The growing role of ultrasound.
    Cooley MB; Wegierak D; Exner AA
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2024; 16(2):e1957. PubMed ID: 38558290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Captopril improves tumor nanomedicine delivery by increasing tumor blood perfusion and enlarging endothelial gaps in tumor blood vessels.
    Zhang B; Jiang T; Tuo Y; Jin K; Luo Z; Shi W; Mei H; Hu Y; Pang Z; Jiang X
    Cancer Lett; 2017 Dec; 410():12-19. PubMed ID: 28939029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reappraisal of anticancer nanomedicine design criteria in three types of preclinical cancer models for better clinical translation.
    Luan X; Yuan H; Song Y; Hu H; Wen B; He M; Zhang H; Li Y; Li F; Shu P; Burnett JP; Truchan N; Palmisano M; Pai MP; Zhou S; Gao W; Sun D
    Biomaterials; 2021 Aug; 275():120910. PubMed ID: 34144373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. What Went Wrong with Anticancer Nanomedicine Design and How to Make It Right.
    Sun D; Zhou S; Gao W
    ACS Nano; 2020 Oct; 14(10):12281-12290. PubMed ID: 33021091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-modal molecular imaging maps the correlation between tumor microenvironments and nanomedicine distribution.
    Strittmatter N; Moss JI; Race AM; Sutton D; Canales JR; Ling S; Wong E; Wilson J; Smith A; Howes C; Bunch J; Barry ST; Goodwin RJA; Ashford MB
    Theranostics; 2022; 12(5):2162-2174. PubMed ID: 35265205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of Factors Determining the Enhanced Permeability and Retention Effect in Subcutaneous Xenografts.
    Bolkestein M; de Blois E; Koelewijn SJ; Eggermont AM; Grosveld F; de Jong M; Koning GA
    J Nucl Med; 2016 Apr; 57(4):601-7. PubMed ID: 26719375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of surface grafting density of PEG macromolecules on dually fluorescent silica nanoparticles used for the in vivo imaging of subcutaneous tumors.
    Adumeau L; Genevois C; Roudier L; Schatz C; Couillaud F; Mornet S
    Biochim Biophys Acta Gen Subj; 2017 Jun; 1861(6):1587-1596. PubMed ID: 28179102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.