BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 31903175)

  • 1. Correction: Regulation of tumor suppressor EAF2 polyubiquitination by ELL1 and SIAH2 in prostate cancer cells.
    Yu X; Ai J; Cai L; Jing Y; Wang D; Dong J; Pascal LE; Zhang J; Luo R; Wang Z
    Oncotarget; 2019 Dec; 10(67):7181-7182. PubMed ID: 31903175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of tumor suppressor EAF2 polyubiquitination by ELL1 and SIAH2 in prostate cancer cells.
    Yu X; Ai J; Cai L; Jing Y; Wang D; Dong J; Pascal LE; Zhang J; Luo R; Wang Z
    Oncotarget; 2016 May; 7(20):29245-54. PubMed ID: 27058417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of ELL2 stability and polyubiquitination by EAF2 in prostate cancer cells.
    Yang T; Jing Y; Dong J; Yu X; Zhong M; Pascal LE; Wang D; Zhang Z; Qiao B; Wang Z
    Prostate; 2018 Nov; 78(15):1201-1212. PubMed ID: 30009504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined Loss of EAF2 and p53 Induces Prostate Carcinogenesis in Male Mice.
    Wang Y; Pascal LE; Zhong M; Ai J; Wang D; Jing Y; Pilch J; Song Q; Rigatti LH; Graham LE; Nelson JB; Parwani AV; Wang Z
    Endocrinology; 2017 Dec; 158(12):4189-4205. PubMed ID: 29029019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EAF2 and p53 Co-Regulate STAT3 Activation in Prostate Cancer.
    Pascal LE; Wang Y; Zhong M; Wang D; Chakka AB; Yang Z; Li F; Song Q; Rigatti LH; Chaparala S; Chandran U; Parwani AV; Wang Z
    Neoplasia; 2018 Apr; 20(4):351-363. PubMed ID: 29518696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EAF2 regulates DNA repair through Ku70/Ku80 in the prostate.
    Ai J; Pascal LE; Wei L; Zang Y; Zhou Y; Yu X; Gong Y; Nakajima S; Nelson JB; Levine AS; Lan L; Wang Z
    Oncogene; 2017 Apr; 36(15):2054-2065. PubMed ID: 27721405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FOXA1 modulates EAF2 regulation of AR transcriptional activity, cell proliferation, and migration in prostate cancer cells.
    Guo W; Keener AL; Jing Y; Cai L; Ai J; Zhang J; Fisher AL; Fu G; Wang Z
    Prostate; 2015 Jun; 75(9):976-87. PubMed ID: 25808853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression and prognostic significance of ELL-associated factor 2 in human prostate cancer.
    Zang Y; Dong Y; Yang D; Xue B; Li F; Gu P; Zhao H; Wang S; Zhou S; Ying R; Wang Z; Shan Y
    Int Urol Nephrol; 2016 May; 48(5):695-700. PubMed ID: 26895851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. U19/Eaf2 knockout causes lung adenocarcinoma, B-cell lymphoma, hepatocellular carcinoma and prostatic intraepithelial neoplasia.
    Xiao W; Zhang Q; Habermacher G; Yang X; Zhang AY; Cai X; Hahn J; Liu J; Pins M; Doglio L; Dhir R; Gingrich J; Wang Z
    Oncogene; 2008 Mar; 27(11):1536-44. PubMed ID: 17873910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correction: Protein 4.1N acts as a potential tumor suppressor linking PP1 to JNK-c-Jun pathway regulation in NSCLC.
    Wang Z; Ma B; Li H; Xiao X; Zhou W; Liu F; Zhang B; Zhu M; Yang Q; Zeng Y; Sun Y; Sun S; Wang Y; Zhang Y; Weng H; Chen L; Ye M; An X; Liu J
    Oncotarget; 2019 Oct; 10(58):6285. PubMed ID: 31692885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correction: A genetic variant in SLC28A3, rs56350726, is associated with progression to castration-resistant prostate cancer in a Korean population with metastatic prostate cancer.
    Jo JK; Oh JJ; Kim YT; Moon HS; Choi HY; Park S; Ho JN; Yoon S; Park HY; Byun SS
    Oncotarget; 2018 Aug; 9(61):31938. PubMed ID: 30159135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correction: CAPN1 is a novel binding partner and regulator of the tumor suppressor NF1 in melanoma.
    Alon M; Arafeh R; Lee JS; Madan S; Kalaora S; Nagler A; Abgarian T; Greenberg P; Ruppin E; Samuels Y
    Oncotarget; 2019 Feb; 10(13):1344. PubMed ID: 30863494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correction: Tumor-suppressive microRNA-218 inhibits tumor angiogenesis via targeting the mTOR component RICTOR in prostate cancer.
    Guan B; Wu K; Zeng J; Xu S; Mu L; Gao Y; Wang K; Ma Z; Tian J; Shi Q; Guo P; Wang X; He D; Du Y
    Oncotarget; 2022; 13():507. PubMed ID: 35284038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correction: Overexpression of AKR1C3 significantly enhances human prostate cancer cells resistance to radiation.
    Sun SQ; Gu X; Gao XS; Li Y; Yu H; Xiong W; Yu H; Wang W; Li Y; Teng Y; Zhou D
    Oncotarget; 2020 Apr; 11(17):1575. PubMed ID: 32391126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correction: Implications of PI3K/AKT inhibition on REST protein stability and neuroendocrine phenotype acquisition in prostate cancer cells.
    Chen R; Li Y; Buttyan R; Dong X
    Oncotarget; 2018 Jul; 9(51):29842. PubMed ID: 30038724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FB1, an E2A fusion partner in childhood leukemia, interacts with U19/EAF2 and inhibits its transcriptional activity.
    Jiang F; Ai J; Xiao W; Wang Z
    Cancer Lett; 2007 Aug; 253(2):265-72. PubMed ID: 17395368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correction: Effects of interferons and double-stranded RNA on human prostate cancer cell apoptosis.
    Tan H; Zeng C; Xie J; Alghamdi NJ; Song Y; Zhang H; Zhou A; Jin D
    Oncotarget; 2019 Oct; 10(57):6044. PubMed ID: 31666935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correction: Metabolic syndrome, endocrine disruptors and prostate cancer associations: biochemical and pathophysiological evidences.
    Quagliariello V; Rossetti S; Cavaliere C; Di Palo R; Lamantia E; Castaldo L; Nocerino F; Ametrano G; Cappuccio F; Malzone G; Montanari M; Vanacore D; Romano FJ; Piscitelli R; Iovane G; Pepe MF; Berretta M; D'Aniello C; PerdonĂ  S; Muto P; Botti G; Ciliberto G; Veneziani BM; De Falco F; Maiolino P; Caraglia M; Montella M; Iaffaioli RV; Facchini G
    Oncotarget; 2017 Sep; 8(37):62816. PubMed ID: 28977991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correction: Infiltrating mast cells increase prostate cancer chemotherapy and radiotherapy resistances via modulation of p38/p53/p21 and ATM signals.
    Xie H; Li C; Dang Q; Chang LS; Li L
    Oncotarget; 2019 Jun; 10(39):3978. PubMed ID: 31231473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correction: Upregulation of microRNA135a-3p and death receptor 5 plays a critical role in Tanshinone I sensitized prostate cancer cells to TRAIL induced apoptosis.
    Shin EA; Sohn EJ; Won G; Choi JU; Jeong M; Kim B; Kim MJ; Kim SH
    Oncotarget; 2018 Jul; 9(55):30720. PubMed ID: 30093981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.