These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 31904070)

  • 1. A strategy for boosting the thermoelectric performance of famatinite Cu
    Tanishita T; Suekuni K; Nishiate H; Lee CH; Ohtaki M
    Phys Chem Chem Phys; 2020 Jan; 22(4):2081-2086. PubMed ID: 31904070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bi and Sn Co-doping Enhanced Thermoelectric Properties of Cu
    Shen M; Lu S; Zhang Z; Liu H; Shen W; Fang C; Wang Q; Chen L; Zhang Y; Jia X
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8271-8279. PubMed ID: 31990526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Te substitution on crystal structure and transport properties of AgBiSe
    Goto Y; Nishida A; Nishiate H; Murata M; Lee CH; Miura A; Moriyoshi C; Kuroiwa Y; Mizuguchi Y
    Dalton Trans; 2018 Feb; 47(8):2575-2580. PubMed ID: 29384546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manipulating the Ge Vacancies and Ge Precipitates through Cr Doping for Realizing the High-Performance GeTe Thermoelectric Material.
    Shuai J; Sun Y; Tan X; Mori T
    Small; 2020 Apr; 16(13):e1906921. PubMed ID: 32105400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Sb Deviation from Its Stoichiometric Ratio on the Micro- and Electronic Structures and Thermoelectric Properties of Cu
    Huang L; Kong Y; Zhang J; Zhu C; Zhang J; Li Y; Li D; Xin H; Wang Z; Qin X
    ACS Appl Mater Interfaces; 2020 Mar; 12(12):14145-14153. PubMed ID: 32109043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phases and thermoelectric properties of SnTe with (Ge, Mn) co-doping.
    Li JQ; Huang S; Chen ZP; Li Y; Song SH; Liu FS; Ao WQ
    Phys Chem Chem Phys; 2017 Nov; 19(42):28749-28755. PubMed ID: 29048083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Band Convergence and Ultra-Low Thermal Conductivity Lead to High Thermoelectric Performance in SnTe.
    Pathak R; Sarkar D; Biswas K
    Angew Chem Int Ed Engl; 2021 Aug; 60(32):17686-17692. PubMed ID: 34105218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultralow Lattice Thermal Conductivity and Superhigh Thermoelectric Figure-of-Merit in (Mg, Bi) Co-Doped GeTe.
    Xing T; Zhu C; Song Q; Huang H; Xiao J; Ren D; Shi M; Qiu P; Shi X; Xu F; Chen L
    Adv Mater; 2021 Apr; 33(17):e2008773. PubMed ID: 33760288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic Effect of Chemical Substitution and Insertion on the Thermoelectric Performance of Cu
    Shimizu Y; Suekuni K; Saito H; Lemoine P; Guilmeau E; Raveau B; Chetty R; Ohta M; Takabatake T; Ohtaki M
    Inorg Chem; 2021 Aug; 60(15):11364-11373. PubMed ID: 34269565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Ge and Sn substitution on the metal-semiconductor transition and thermoelectric properties of Cu
    Kosaka Y; Suekuni K; Hashikuni K; Bouyrie Y; Ohta M; Takabatake T
    Phys Chem Chem Phys; 2017 Mar; 19(13):8874-8879. PubMed ID: 28294254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low Thermal Conductivity and Optimized Thermoelectric Properties of p-Type Te-Sb
    An D; Chen S; Lu Z; Li R; Chen W; Fan W; Wang W; Wu Y
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):27788-27797. PubMed ID: 31287652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanostructures versus solid solutions: low lattice thermal conductivity and enhanced thermoelectric figure of merit in Pb9.6Sb0.2Te10-xSex bulk materials.
    Poudeu PF; D'Angelo J; Kong H; Downey A; Short JL; Pcionek R; Hogan TP; Uher C; Kanatzidis MG
    J Am Chem Soc; 2006 Nov; 128(44):14347-55. PubMed ID: 17076508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved Thermoelectric Performance of Tellurium by Alloying with a Small Concentration of Selenium to Decrease Lattice Thermal Conductivity.
    Saparamadu U; Li C; He R; Zhu H; Ren Z; Mao J; Song S; Sun J; Chen S; Zhang Q; Nielsch K; Broido D; Ren Z
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):511-516. PubMed ID: 30525424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heavy doping and band engineering by potassium to improve the thermoelectric figure of merit in p-type PbTe, PbSe, and PbTe(1-y)Se(y).
    Zhang Q; Cao F; Liu W; Lukas K; Yu B; Chen S; Opeil C; Broido D; Chen G; Ren Z
    J Am Chem Soc; 2012 Jun; 134(24):10031-8. PubMed ID: 22676702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneously Boosting Thermoelectric and Mechanical Properties of n-Type Mg
    Yu L; Shi XL; Mao Y; Liu WD; Ji Z; Wei S; Zhang Z; Song W; Zheng S; Chen ZG
    ACS Nano; 2024 Jan; 18(2):1678-1689. PubMed ID: 38164927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing thermoelectric performance by Fermi level tuning and thermal conductivity degradation in (Ge
    Wei PC; Cai CX; Hsing CR; Wei CM; Yu SH; Wu HJ; Chen CL; Wei DH; Nguyen DL; Chou MMC; Chen YY
    Sci Rep; 2019 Jun; 9(1):8616. PubMed ID: 31197195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High thermoelectric performance from optimization of hole-doped CuInTe2.
    Zhou G; Wang D
    Phys Chem Chem Phys; 2016 Feb; 18(8):5925-31. PubMed ID: 26593866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the Effect of MWCNT Nanoinclusions on the Thermoelectric Performance of Cu
    Theja VCS; Karthikeyan V; Assi DS; Gopalan S; Roy VAL
    ACS Omega; 2022 Dec; 7(51):48484-48492. PubMed ID: 36591112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bismuth Doping in Nanostructured Tetrahedrite: Scalable Synthesis and Thermoelectric Performance.
    Baláž P; Guilmeau E; Achimovičová M; Baláž M; Daneu N; Dobrozhan O; Kaňuchová M
    Nanomaterials (Basel); 2021 May; 11(6):. PubMed ID: 34070243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manipulating Localized Vibrations of Interstitial Te for Ultra-High Thermoelectric Efficiency in p-Type Cu-In-Te Systems.
    Ren T; Han Z; Ying P; Li X; Li X; Lin X; Sarker D; Cui J
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):32192-32199. PubMed ID: 31442031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.