BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 31904100)

  • 1. Protein extraction from excess sludge by alkali-thermal hydrolysis.
    Gao J; Wang Y; Yan Y; Li Z; Chen M
    Environ Sci Pollut Res Int; 2020 Mar; 27(8):8628-8637. PubMed ID: 31904100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of protein extraction methods from excess activated sludge.
    Gao J; Weng W; Yan Y; Wang Y; Wang Q
    Chemosphere; 2020 Jun; 249():126107. PubMed ID: 32062556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracellular and extracellular sources, transformation process and resource recovery value of proteins extracted from wastewater treatment sludge via alkaline thermal hydrolysis and enzymatic hydrolysis.
    Yan Y; Zhang Y; Gao J; Qin L; Liu F; Zeng W; Wan J
    Sci Total Environ; 2022 Dec; 852():158512. PubMed ID: 36063951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein extraction and sludge dewatering performance of ultrasound-assisted enzymatic hydrolysis of excess sludge.
    Yan Y; Qin L; Gao J; Nan R; Gao J
    Environ Sci Pollut Res Int; 2020 May; 27(15):18317-18328. PubMed ID: 32185736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of ultrasound, low-temperature thermal and alkali pre-treatments on waste activated sludge rheology, hygienization and methane potential.
    Ruiz-Hernando M; Martín-Díaz J; Labanda J; Mata-Alvarez J; Llorens J; Lucena F; Astals S
    Water Res; 2014 Sep; 61():119-29. PubMed ID: 24907480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zero-valent iron enhanced methanogenic activity in anaerobic digestion of waste activated sludge after heat and alkali pretreatment.
    Zhang Y; Feng Y; Quan X
    Waste Manag; 2015 Apr; 38():297-302. PubMed ID: 25681947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of protein recovery from sewage sludge via controlled and energy-saving ultrasonic-alkali hydrolysis.
    Yan Y; Zhang Y; Wan J; Gao J; Liu F
    Sci Total Environ; 2023 Apr; 870():162004. PubMed ID: 36739027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Destroying lignocellulosic matters for enhancing methane production from excess sludge.
    Hao X; Hu Y; Cao D
    Environ Technol; 2016; 37(5):623-9. PubMed ID: 26215289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Enhancement of anaerobic digestion of excess sludge by acid-alkali pretreatment].
    Yuan GH; Zhou XQ; Wu JD
    Huan Jing Ke Xue; 2012 Jun; 33(6):1918-22. PubMed ID: 22946176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissociation and removal of alkali and alkaline earth metals from sewage sludge flocs during separate and assisted thermal hydrolysis.
    Jin M; Liu H; Deng H; Xiao H; Liu S; Yao H
    Water Res; 2023 Feb; 229():119409. PubMed ID: 36462258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Treatment of 14 sludge types from wastewater treatment plants using bench and pilot thermal hydrolysis.
    Qiao W; Sun Y; Wang W
    Water Sci Technol; 2012; 66(4):895-902. PubMed ID: 22766883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced mechanical deep dewatering of dewatered sludge by a thermal hydrolysis pre-treatment: Effects of temperature and retention time.
    Kim HJ; Chon K; Lee YG; Kim YK; Jang A
    Environ Res; 2020 Sep; 188():109746. PubMed ID: 32540570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel technology for sewage sludge utilization: preparation of amino acids chelated trace elements (AACTE) fertilizer.
    Liu Y; Kong S; Li Y; Zeng H
    J Hazard Mater; 2009 Nov; 171(1-3):1159-67. PubMed ID: 19616890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Promoting high-temperature hydrolysis under alkaline condition].
    He YF; Yang FL; Hu SW; Sun C; Liu ZQ; Gong Z
    Huan Jing Ke Xue; 2008 Aug; 29(8):2260-5. PubMed ID: 18839582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Process control for improving dewatering performance of sewage sludge based on carbonaceous skeleton-assisted thermal hydrolysis.
    Xiao H; Liu H; Jin M; Deng H; Wang J; Yao H
    Chemosphere; 2022 Jun; 296():134006. PubMed ID: 35189199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing enzyme activity via low-intensity ultrasound for protein extraction from excess sludge.
    Yan Y; Liu F; Gao J; Wan J; Ding J; Li T
    Chemosphere; 2022 Sep; 303(Pt 2):134936. PubMed ID: 35569633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cadmium adsorption characteristic of alkali modified sewage sludge.
    Hu JL; He XW; Wang CR; Li JW; Zhang CH
    Bioresour Technol; 2012 Oct; 121():25-30. PubMed ID: 22858464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Sewage sludge microwave thermal hydrolysis process].
    Qiao W; Wang W; Li P; Xun R
    Huan Jing Ke Xue; 2008 Jan; 29(1):152-7. PubMed ID: 18441933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dewatering of sewage sludge via thermal hydrolysis with ammonia-treated Fenton iron sludge as skeleton material.
    Xu ZX; Song H; Deng XQ; Zhang YY; Xue-Qin M; Tong SQ; He ZX; Wang Q; Shao YW; Hu X
    J Hazard Mater; 2019 Nov; 379():120810. PubMed ID: 31255849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon-rich and low-ash hydrochar formation from sewage sludge by alkali-thermal hydrolysis coupled with acid-assisted hydrothermal carbonization.
    Wang L; Yin G; Chang Y; Qiao S
    Waste Manag; 2024 Apr; 177():182-195. PubMed ID: 38330514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.