BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 31904454)

  • 1. Conformational structure variation of human serum albumin after binding interaction with black phosphorus quantum dots.
    Huang S; Li H; Luo H; Yang L; Zhou Z; Xiao Q; Liu Y
    Int J Biol Macromol; 2020 Mar; 146():405-414. PubMed ID: 31904454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation on conformational variation and fibrillation of human serum albumin affected by molybdenum disulfide quantum dots.
    Luo H; Li B; Liu J; Liu Y; Xiao Q; Huang S
    Int J Biol Macromol; 2021 Nov; 190():999-1006. PubMed ID: 34487782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation on conformational variation and activity of trypsin affected by black phosphorus quantum dots via multi-spectroscopy and molecular modeling.
    Luo H; Li H; Liu Y; Yang L; Xiao Q; Huang S
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jul; 256():119746. PubMed ID: 33819763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigations of conformational structure and enzymatic activity of trypsin after its binding interaction with graphene oxide.
    Huang S; Li H; Liu Y; Yang L; Wang D; Xiao Q
    J Hazard Mater; 2020 Jun; 392():122285. PubMed ID: 32105952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigations of interaction mechanism and conformational variation of serum albumin affected by artemisinin and dihydroartemisinin.
    Zhu R; Liang Y; Luo H; Cao H; Liu Y; Huang S; Xiao Q
    J Mol Recognit; 2023 Jan; 36(1):e3000. PubMed ID: 36315411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study on the molecular interaction of graphene quantum dots with human serum albumin: combined spectroscopic and electrochemical approaches.
    Huang S; Qiu H; Lu S; Zhu F; Xiao Q
    J Hazard Mater; 2015 Mar; 285():18-26. PubMed ID: 25462867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the interaction of a new synthesized CdTe quantum dots with human serum albumin and bovine serum albumin by spectroscopic methods.
    Bardajee GR; Hooshyar Z
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():806-15. PubMed ID: 26952487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamics, Conformation, and Biocatalytic Performance of Glucose Oxidase Combined with Black Phosphorus Quantum Dots.
    Li H; Huang Y; Liu Y; Jiang P
    Langmuir; 2023 Jan; 39(1):334-342. PubMed ID: 36562100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular interaction of manganese based carbon monoxide releasing molecule (MnCORM) with human serum albumin (HSA).
    Vidhyapriya P; Divya D; Manimaran B; Sakthivel N
    Bioorg Chem; 2019 Nov; 92():103078. PubMed ID: 31525522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of molecular interactions of Ag
    Xiao Q; Liang Y; Liu Y; Lu S; Huang S
    Luminescence; 2018 Feb; 33(1):181-189. PubMed ID: 28905512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on the molecular recognition action of lamivudine by human serum albumin.
    Zhang HX; Zhou D; Xia QH
    J Mol Recognit; 2018 Jul; 31(7):e2705. PubMed ID: 29512220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic and Molecular Modeling Studies on Binding of Fleroxacin with Human Serum Albumin.
    Dong CY; Xu J; Zhou SS; Liu Y
    Guang Pu Xue Yu Guang Pu Fen Xi; 2017 Jan; 37(1):327-32. PubMed ID: 30222301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deciphering the binding of carbendazim (fungicide) with human serum albumin: A multi-spectroscopic and molecular modelling studies.
    Siddiqui MF; Khan MS; Husain FM; Bano B
    J Biomol Struct Dyn; 2019 Jun; 37(9):2230-2241. PubMed ID: 30047309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative study of binding interactions between three organometallic rhodium(III) complexes with curcuminoid ligands and human serum albumin.
    Huang S; Luo H; Su W; Xiao Q; Xie J
    J Mol Recognit; 2021 Feb; 34(2):e2876. PubMed ID: 32974948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the binding mechanism of capecitabine to human serum albumin using spectrometric methods, molecular modeling, and chemometrics approach.
    Mousavi SF; Fatemi MH
    Bioorg Chem; 2019 Sep; 90():103037. PubMed ID: 31212179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tea polyphenol modified, photothermal responsive and ROS generative black phosphorus quantum dots as nanoplatforms for promoting MRSA infected wounds healing in diabetic rats.
    Xu S; Chang L; Hu Y; Zhao X; Huang S; Chen Z; Ren X; Mei X
    J Nanobiotechnology; 2021 Nov; 19(1):362. PubMed ID: 34758829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the mode of binding mechanism of doripenem to human serum albumin: Spectroscopic and molecular docking approaches.
    Maryam L; Sharma A; Azam MW; Khan SN; Khan AU
    J Mol Recognit; 2018 Jul; 31(7):e2710. PubMed ID: 29603446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Black Phosphorus Quantum Dots Gated, Carbon-Coated Fe
    Zhang M; Wang W; Wu F; Graveran K; Zhang J; Wu C
    Chemistry; 2018 Sep; 24(49):12890-12901. PubMed ID: 29855103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the interaction of a coumarin-di(2-picolyl)amine hybrid drug-like molecular entity with human serum albumin: Multiple spectroscopic and molecular modeling techniques.
    Khan S; Zafar A; Naseem I
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Dec; 223():117330. PubMed ID: 31280128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploration of interaction of canthaxanthin with human serum albumin by spectroscopic and molecular simulation methods.
    Jia J; Wang Y; Liu Y; Xiang Y
    Luminescence; 2018 Mar; 33(2):425-432. PubMed ID: 29251407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.